脚本专栏 
首页 > 脚本专栏 > 浏览文章

pytorch实现查看当前学习率

(编辑:jimmy 日期: 2025/5/13 浏览:3 次 )

在pytorch训练过程中可以通过下面这一句代码来打印当前学习率

print(net.optimizer.state_dict()['param_groups'][0]['lr'])

补充知识:Pytorch:代码实现不同层设置不同的学习率,选择性学习某些层参数

1,如何动态调整学习率

在使用pytorch进行模型训练时,经常需要随着训练的进行逐渐降低学习率,在pytorch中给出了非常方面的方法:

假设我们定义了一个优化器:

import torch
import torch.nn as nn
optimizer = torch.optim(model.parameters(), lr = 0.01, momentum = 0.9)

该优化器的初始化学习为0.01,

如果我们学习每个"n" 个epoch把学习率降低为原来的0.9倍,则需要声明一个学习率调节器:

torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

其中:

optimizer: 前面声明的优化器;

step_size: 每step_size个epoch学习率降低为原来的gamma倍,

last_epoch: 当前所处的epoch

例如:

# Assuming optimizer uses lr = 0.05 for all groups
 # lr = 0.05  if epoch < 30
 # lr = 0.005 if 30 <= epoch < 60
 # lr = 0.0005 if 60 <= epoch < 90
 # ...
 scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
 for epoch in range(100):
  scheduler.step()
  train(...)
  validate(...)

另外其他常用的更新策略类似:

torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1)

torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)

torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)

torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)

2,如何选择性学习某些参数

对于我们现有的模型model,通过调整参数的requires_grad 属性控制该模型是否参与求导运算

for name, param in model.named_parameters():
 if param.requires_grad:
  print("requires_grad: True ", name)
 else:
  print("requires_grad: False ", name)

如果模型中包含多个子模块,可用通过

sub_block = model.children()

获取该模块,然后通过迭代索引的方式获取参数:

for name, param in sub_block.named_parameters()

以上这篇pytorch实现查看当前学习率就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:python安装读取grib库总结(推荐)
下一篇:Pytorch mask-rcnn 实现细节分享
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap