PHP+JS+rsa数据加密传输实现代码
(编辑:jimmy 日期: 2024/11/30 浏览:3 次 )
JS端代码:
复制代码 代码如下:
//文件base64.js:
var b64map="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var b64pad="=";
function hex2b64(h) {
var i;
var c;
var ret = "";
for(i = 0; i+3 <= h.length; i+=3) {
c = parseInt(h.substring(i,i+3),16);
ret += b64map.charAt(c 6) + b64map.charAt(c & 63);
}
if(i+1 == h.length) {
c = parseInt(h.substring(i,i+1),16);
ret += b64map.charAt(c << 2);
}
else if(i+2 == h.length) {
c = parseInt(h.substring(i,i+2),16);
ret += b64map.charAt(c 2) + b64map.charAt((c & 3) << 4);
}
while((ret.length & 3) > 0) ret += b64pad;
return ret;
}
// convert a base64 string to hex
function b64tohex(s) {
var ret = ""
var i;
var k = 0; // b64 state, 0-3
var slop;
for(i = 0; i < s.length; ++i) {
if(s.charAt(i) == b64pad) break;
v = b64map.indexOf(s.charAt(i));
if(v < 0) continue;
if(k == 0) {
ret += int2char(v 2);
slop = v & 3;
k = 1;
}
else if(k == 1) {
ret += int2char((slop << 2) | (v 4));
slop = v & 0xf;
k = 2;
}
else if(k == 2) {
ret += int2char(slop);
ret += int2char(v 2);
slop = v & 3;
k = 3;
}
else {
ret += int2char((slop << 2) | (v 4));
ret += int2char(v & 0xf);
k = 0;
}
}
if(k == 1)
ret += int2char(slop << 2);
return ret;
}
// convert a base64 string to a byte/number array
function b64toBA(s) {
//piggyback on b64tohex for now, optimize later
var h = b64tohex(s);
var i;
var a = new Array();
for(i = 0; 2*i < h.length; ++i) {
a[i] = parseInt(h.substring(2*i,2*i+2),16);
}
return a;
}
#文件jsbn.js
// Copyright (c) 2005 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Basic JavaScript BN library - subset useful for RSA encryption.
// Bits per digit
var dbits;
// JavaScript engine analysis
var canary = 0xdeadbeefcafe;
var j_lm = ((canary&0xffffff)==0xefcafe);
// (public) Constructor
function BigInteger(a,b,c) {
if(a != null)
if("number" == typeof a) this.fromNumber(a,b,c);
else if(b == null && "string" != typeof a) this.fromString(a,256);
else this.fromString(a,b);
}
// return new, unset BigInteger
function nbi() { return new BigInteger(null); }
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i,x,w,j,c,n) {
while(--n >= 0) {
var v = x*this[i++]+w[j]+c;
c = Math.floor(v/0x4000000);
w[j++] = v&0x3ffffff;
}
return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i,x,w,j,c,n) {
var xl = x&0x7fff, xh = x15;
while(--n >= 0) {
var l = this[i]&0x7fff;
var h = this[i++]15;
var m = xh*l+h*xl;
l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
c = (l>30)+(m>15)+xh*h+(c>30);
w[j++] = l&0x3fffffff;
}
return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i,x,w,j,c,n) {
var xl = x&0x3fff, xh = x14;
while(--n >= 0) {
var l = this[i]&0x3fff;
var h = this[i++]14;
var m = xh*l+h*xl;
l = xl*l+((m&0x3fff)<<14)+w[j]+c;
c = (l28)+(m14)+xh*h;
w[j++] = l&0xfffffff;
}
return c;
}
if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
BigInteger.prototype.am = am2;
dbits = 30;
}
else if(j_lm && (navigator.appName != "Netscape")) {
BigInteger.prototype.am = am1;
dbits = 26;
}
else { // Mozilla/Netscape seems to prefer am3
BigInteger.prototype.am = am3;
dbits = 28;
}
BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = ((1<<dbits)-1);
BigInteger.prototype.DV = (1<<dbits);
var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2,BI_FP);
BigInteger.prototype.F1 = BI_FP-dbits;
BigInteger.prototype.F2 = 2*dbits-BI_FP;
// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
var rr,vv;
rr = "0".charCodeAt(0);
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
rr = "a".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
rr = "A".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
function int2char(n) { return BI_RM.charAt(n); }
function intAt(s,i) {
var c = BI_RC[s.charCodeAt(i)];
return (c==null)?-1:c;
}
// (protected) copy this to r
function bnpCopyTo(r) {
for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
r.t = this.t;
r.s = this.s;
}
// (protected) set from integer value x, -DV <= x < DV
function bnpFromInt(x) {
this.t = 1;
this.s = (x<0)?-1:0;
if(x > 0) this[0] = x;
else if(x < -1) this[0] = x+DV;
else this.t = 0;
}
// return bigint initialized to value
function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
// (protected) set from string and radix
function bnpFromString(s,b) {
var k;
if(b == 16) k = 4;
else if(b == 8) k = 3;
else if(b == 256) k = 8; // byte array
else if(b == 2) k = 1;
else if(b == 32) k = 5;
else if(b == 4) k = 2;
else { this.fromRadix(s,b); return; }
this.t = 0;
this.s = 0;
var i = s.length, mi = false, sh = 0;
while(--i >= 0) {
var x = (k==8)?s[i]&0xff:intAt(s,i);
if(x < 0) {
if(s.charAt(i) == "-") mi = true;
continue;
}
mi = false;
if(sh == 0)
this[this.t++] = x;
else if(sh+k > this.DB) {
this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
this[this.t++] = (x(this.DB-sh));
}
else
this[this.t-1] |= x<<sh;
sh += k;
if(sh >= this.DB) sh -= this.DB;
}
if(k == 8 && (s[0]&0x80) != 0) {
this.s = -1;
if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
}
this.clamp();
if(mi) BigInteger.ZERO.subTo(this,this);
}
// (protected) clamp off excess high words
function bnpClamp() {
var c = this.s&this.DM;
while(this.t > 0 && this[this.t-1] == c) --this.t;
}
// (public) return string representation in given radix
function bnToString(b) {
if(this.s < 0) return "-"+this.negate().toString(b);
var k;
if(b == 16) k = 4;
else if(b == 8) k = 3;
else if(b == 2) k = 1;
else if(b == 32) k = 5;
else if(b == 4) k = 2;
else return this.toRadix(b);
var km = (1<<k)-1, d, m = false, r = "", i = this.t;
var p = this.DB-(i*this.DB)%k;
if(i-- > 0) {
if(p < this.DB && (d = this[i]p) > 0) { m = true; r = int2char(d); }
while(i >= 0) {
if(p < k) {
d = (this[i]&((1<<p)-1))<<(k-p);
d |= this[--i](p+=this.DB-k);
}
else {
d = (this[i](p-=k))&km;
if(p <= 0) { p += this.DB; --i; }
}
if(d > 0) m = true;
if(m) r += int2char(d);
}
}
return m?r:"0";
}
// (public) -this
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
// (public) |this|
function bnAbs() { return (this.s<0)?this.negate():this; }
// (public) return + if this > a, - if this < a, 0 if equal
function bnCompareTo(a) {
var r = this.s-a.s;
if(r != 0) return r;
var i = this.t;
r = i-a.t;
if(r != 0) return r;
while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
return 0;
}
// returns bit length of the integer x
function nbits(x) {
var r = 1, t;
if((t=x>16) != 0) { x = t; r += 16; }
if((t=x8) != 0) { x = t; r += 8; }
if((t=x4) != 0) { x = t; r += 4; }
if((t=x2) != 0) { x = t; r += 2; }
if((t=x1) != 0) { x = t; r += 1; }
return r;
}
// (public) return the number of bits in "this"
function bnBitLength() {
if(this.t <= 0) return 0;
return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
}
// (protected) r = this << n*DB
function bnpDLShiftTo(n,r) {
var i;
for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
for(i = n-1; i >= 0; --i) r[i] = 0;
r.t = this.t+n;
r.s = this.s;
}
// (protected) r = this n*DB
function bnpDRShiftTo(n,r) {
for(var i = n; i < this.t; ++i) r[i-n] = this[i];
r.t = Math.max(this.t-n,0);
r.s = this.s;
}
// (protected) r = this << n
function bnpLShiftTo(n,r) {
var bs = n%this.DB;
var cbs = this.DB-bs;
var bm = (1<<cbs)-1;
var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
for(i = this.t-1; i >= 0; --i) {
r[i+ds+1] = (this[i]cbs)|c;
c = (this[i]&bm)<<bs;
}
for(i = ds-1; i >= 0; --i) r[i] = 0;
r[ds] = c;
r.t = this.t+ds+1;
r.s = this.s;
r.clamp();
}
// (protected) r = this n
function bnpRShiftTo(n,r) {
r.s = this.s;
var ds = Math.floor(n/this.DB);
if(ds >= this.t) { r.t = 0; return; }
var bs = n%this.DB;
var cbs = this.DB-bs;
var bm = (1<<bs)-1;
r[0] = this[ds]bs;
for(var i = ds+1; i < this.t; ++i) {
r[i-ds-1] |= (this[i]&bm)<<cbs;
r[i-ds] = this[i]bs;
}
if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
r.t = this.t-ds;
r.clamp();
}
// (protected) r = this - a
function bnpSubTo(a,r) {
var i = 0, c = 0, m = Math.min(a.t,this.t);
while(i < m) {
c += this[i]-a[i];
r[i++] = c&this.DM;
c = this.DB;
}
if(a.t < this.t) {
c -= a.s;
while(i < this.t) {
c += this[i];
r[i++] = c&this.DM;
c = this.DB;
}
c += this.s;
}
else {
c += this.s;
while(i < a.t) {
c -= a[i];
r[i++] = c&this.DM;
c = this.DB;
}
c -= a.s;
}
r.s = (c<0)?-1:0;
if(c < -1) r[i++] = this.DV+c;
else if(c > 0) r[i++] = c;
r.t = i;
r.clamp();
}
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
function bnpMultiplyTo(a,r) {
var x = this.abs(), y = a.abs();
var i = x.t;
r.t = i+y.t;
while(--i >= 0) r[i] = 0;
for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
r.s = 0;
r.clamp();
if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
}
// (protected) r = this^2, r != this (HAC 14.16)
function bnpSquareTo(r) {
var x = this.abs();
var i = r.t = 2*x.t;
while(--i >= 0) r[i] = 0;
for(i = 0; i < x.t-1; ++i) {
var c = x.am(i,x[i],r,2*i,0,1);
if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
r[i+x.t] -= x.DV;
r[i+x.t+1] = 1;
}
}
if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
r.s = 0;
r.clamp();
}
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
function bnpDivRemTo(m,q,r) {
var pm = m.abs();
if(pm.t <= 0) return;
var pt = this.abs();
if(pt.t < pm.t) {
if(q != null) q.fromInt(0);
if(r != null) this.copyTo(r);
return;
}
if(r == null) r = nbi();
var y = nbi(), ts = this.s, ms = m.s;
var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
else { pm.copyTo(y); pt.copyTo(r); }
var ys = y.t;
var y0 = y[ys-1];
if(y0 == 0) return;
var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]this.F2:0);
var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
var i = r.t, j = i-ys, t = (q==null)?nbi():q;
y.dlShiftTo(j,t);
if(r.compareTo(t) >= 0) {
r[r.t++] = 1;
r.subTo(t,r);
}
BigInteger.ONE.dlShiftTo(ys,t);
t.subTo(y,y); // "negative" y so we can replace sub with am later
while(y.t < ys) y[y.t++] = 0;
while(--j >= 0) {
// Estimate quotient digit
var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
y.dlShiftTo(j,t);
r.subTo(t,r);
while(r[i] < --qd) r.subTo(t,r);
}
}
if(q != null) {
r.drShiftTo(ys,q);
if(ts != ms) BigInteger.ZERO.subTo(q,q);
}
r.t = ys;
r.clamp();
if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
if(ts < 0) BigInteger.ZERO.subTo(r,r);
}
// (public) this mod a
function bnMod(a) {
var r = nbi();
this.abs().divRemTo(a,null,r);
if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
return r;
}
// Modular reduction using "classic" algorithm
function Classic(m) { this.m = m; }
function cConvert(x) {
if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
else return x;
}
function cRevert(x) { return x; }
function cReduce(x) { x.divRemTo(this.m,null,x); }
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
Classic.prototype.convert = cConvert;
Classic.prototype.revert = cRevert;
Classic.prototype.reduce = cReduce;
Classic.prototype.mulTo = cMulTo;
Classic.prototype.sqrTo = cSqrTo;
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
function bnpInvDigit() {
if(this.t < 1) return 0;
var x = this[0];
if((x&1) == 0) return 0;
var y = x&3; // y == 1/x mod 2^2
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y>0)?this.DV-y:-y;
}
// Montgomery reduction
function Montgomery(m) {
this.m = m;
this.mp = m.invDigit();
this.mpl = this.mp&0x7fff;
this.mph = this.mp15;
this.um = (1<<(m.DB-15))-1;
this.mt2 = 2*m.t;
}
// xR mod m
function montConvert(x) {
var r = nbi();
x.abs().dlShiftTo(this.m.t,r);
r.divRemTo(this.m,null,r);
if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
return r;
}
// x/R mod m
function montRevert(x) {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
// x = x/R mod m (HAC 14.32)
function montReduce(x) {
while(x.t <= this.mt2) // pad x so am has enough room later
x[x.t++] = 0;
for(var i = 0; i < this.m.t; ++i) {
// faster way of calculating u0 = x[i]*mp mod DV
var j = x[i]&0x7fff;
var u0 = (j*this.mpl+(((j*this.mph+(x[i]15)*this.mpl)&this.um)<<15))&x.DM;
// use am to combine the multiply-shift-add into one call
j = i+this.m.t;
x[j] += this.m.am(0,u0,x,i,0,this.m.t);
// propagate carry
while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
}
x.clamp();
x.drShiftTo(this.m.t,x);
if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
}
// r = "x^2/R mod m"; x != r
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
// r = "xy/R mod m"; x,y != r
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
Montgomery.prototype.convert = montConvert;
Montgomery.prototype.revert = montRevert;
Montgomery.prototype.reduce = montReduce;
Montgomery.prototype.mulTo = montMulTo;
Montgomery.prototype.sqrTo = montSqrTo;
// (protected) true iff this is even
function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
function bnpExp(e,z) {
if(e > 0xffffffff || e < 1) return BigInteger.ONE;
var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
g.copyTo(r);
while(--i >= 0) {
z.sqrTo(r,r2);
if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
else { var t = r; r = r2; r2 = t; }
}
return z.revert(r);
}
// (public) this^e % m, 0 <= e < 2^32
function bnModPowInt(e,m) {
var z;
if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
return this.exp(e,z);
}
// protected
BigInteger.prototype.copyTo = bnpCopyTo;
BigInteger.prototype.fromInt = bnpFromInt;
BigInteger.prototype.fromString = bnpFromString;
BigInteger.prototype.clamp = bnpClamp;
BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
BigInteger.prototype.drShiftTo = bnpDRShiftTo;
BigInteger.prototype.lShiftTo = bnpLShiftTo;
BigInteger.prototype.rShiftTo = bnpRShiftTo;
BigInteger.prototype.subTo = bnpSubTo;
BigInteger.prototype.multiplyTo = bnpMultiplyTo;
BigInteger.prototype.squareTo = bnpSquareTo;
BigInteger.prototype.divRemTo = bnpDivRemTo;
BigInteger.prototype.invDigit = bnpInvDigit;
BigInteger.prototype.isEven = bnpIsEven;
BigInteger.prototype.exp = bnpExp;
// public
BigInteger.prototype.toString = bnToString;
BigInteger.prototype.negate = bnNegate;
BigInteger.prototype.abs = bnAbs;
BigInteger.prototype.compareTo = bnCompareTo;
BigInteger.prototype.bitLength = bnBitLength;
BigInteger.prototype.mod = bnMod;
BigInteger.prototype.modPowInt = bnModPowInt;
// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1);
#文件prng4.js
// prng4.js - uses Arcfour as a PRNG
function Arcfour() {
this.i = 0;
this.j = 0;
this.S = new Array();
}
// Initialize arcfour context from key, an array of ints, each from [0..255]
function ARC4init(key) {
var i, j, t;
for(i = 0; i < 256; ++i)
this.S[i] = i;
j = 0;
for(i = 0; i < 256; ++i) {
j = (j + this.S[i] + key[i % key.length]) & 255;
t = this.S[i];
this.S[i] = this.S[j];
this.S[j] = t;
}
this.i = 0;
this.j = 0;
}
function ARC4next() {
var t;
this.i = (this.i + 1) & 255;
this.j = (this.j + this.S[this.i]) & 255;
t = this.S[this.i];
this.S[this.i] = this.S[this.j];
this.S[this.j] = t;
return this.S[(t + this.S[this.i]) & 255];
}
Arcfour.prototype.init = ARC4init;
Arcfour.prototype.next = ARC4next;
// Plug in your RNG constructor here
function prng_newstate() {
return new Arcfour();
}
// Pool size must be a multiple of 4 and greater than 32.
// An array of bytes the size of the pool will be passed to init()
var rng_psize = 256;
文件:rng.js
// Random number generator - requires a PRNG backend, e.g. prng4.js
// For best results, put code like
// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
// in your main HTML document.
var rng_state;
var rng_pool;
var rng_pptr;
// Mix in a 32-bit integer into the pool
function rng_seed_int(x) {
rng_pool[rng_pptr++] ^= x & 255;
rng_pool[rng_pptr++] ^= (x 8) & 255;
rng_pool[rng_pptr++] ^= (x 16) & 255;
rng_pool[rng_pptr++] ^= (x 24) & 255;
if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
}
// Mix in the current time (w/milliseconds) into the pool
function rng_seed_time() {
rng_seed_int(new Date().getTime());
}
// Initialize the pool with junk if needed.
if(rng_pool == null) {
rng_pool = new Array();
rng_pptr = 0;
var t;
if(navigator.appName == "Netscape" && navigator.appVersion < "5" && window.crypto) {
// Extract entropy (256 bits) from NS4 RNG if available
var z = window.crypto.random(32);
for(t = 0; t < z.length; ++t)
rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
}
while(rng_pptr < rng_psize) { // extract some randomness from Math.random()
t = Math.floor(65536 * Math.random());
rng_pool[rng_pptr++] = t > 8;
rng_pool[rng_pptr++] = t & 255;
}
rng_pptr = 0;
rng_seed_time();
//rng_seed_int(window.screenX);
//rng_seed_int(window.screenY);
}
function rng_get_byte() {
if(rng_state == null) {
rng_seed_time();
rng_state = prng_newstate();
rng_state.init(rng_pool);
for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
rng_pool[rng_pptr] = 0;
rng_pptr = 0;
//rng_pool = null;
}
// TODO: allow reseeding after first request
return rng_state.next();
}
function rng_get_bytes(ba) {
var i;
for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
}
function SecureRandom() {}
SecureRandom.prototype.nextBytes = rng_get_bytes;
#文件:rsa.js
// Depends on jsbn.js and rng.js
// Version 1.1: support utf-8 encoding in pkcs1pad2
// convert a (hex) string to a bignum object
function parseBigInt(str,r) {
return new BigInteger(str,r);
}
function linebrk(s,n) {
var ret = "";
var i = 0;
while(i + n < s.length) {
ret += s.substring(i,i+n) + "\n";
i += n;
}
return ret + s.substring(i,s.length);
}
function byte2Hex(b) {
if(b < 0x10)
return "0" + b.toString(16);
else
return b.toString(16);
}
// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
function pkcs1pad2(s,n) {
if(n < s.length + 11) { // TODO: fix for utf-8
alert("Message too long for RSA");
return null;
}
var ba = new Array();
var i = s.length - 1;
while(i >= 0 && n > 0) {
var c = s.charCodeAt(i--);
if(c < 128) { // encode using utf-8
ba[--n] = c;
}
else if((c > 127) && (c < 2048)) {
ba[--n] = (c & 63) | 128;
ba[--n] = (c 6) | 192;
}
else {
ba[--n] = (c & 63) | 128;
ba[--n] = ((c 6) & 63) | 128;
ba[--n] = (c 12) | 224;
}
}
ba[--n] = 0;
var rng = new SecureRandom();
var x = new Array();
while(n > 2) { // random non-zero pad
x[0] = 0;
while(x[0] == 0) rng.nextBytes(x);
ba[--n] = x[0];
}
ba[--n] = 2;
ba[--n] = 0;
return new BigInteger(ba);
}
// "empty" RSA key constructor
function RSAKey() {
this.n = null;
this.e = 0;
this.d = null;
this.p = null;
this.q = null;
this.dmp1 = null;
this.dmq1 = null;
this.coeff = null;
}
// Set the public key fields N and e from hex strings
function RSASetPublic(N,E) {
if(N != null && E != null && N.length > 0 && E.length > 0) {
this.n = parseBigInt(N,16);
this.e = parseInt(E,16);
}
else
alert("Invalid RSA public key");
}
// Perform raw public operation on "x": return x^e (mod n)
function RSADoPublic(x) {
return x.modPowInt(this.e, this.n);
}
// Return the PKCS#1 RSA encryption of "text" as an even-length hex string
function RSAEncrypt(text) {
var m = pkcs1pad2(text,(this.n.bitLength()+7)3);
if(m == null) return null;
var c = this.doPublic(m);
if(c == null) return null;
var h = c.toString(16);
if((h.length & 1) == 0) return h; else return "0" + h;
}
// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
//function RSAEncryptB64(text) {
// var h = this.encrypt(text);
// if(h) return hex2b64(h); else return null;
//}
// protected
RSAKey.prototype.doPublic = RSADoPublic;
// public
RSAKey.prototype.setPublic = RSASetPublic;
RSAKey.prototype.encrypt = RSAEncrypt;
//RSAKey.prototype.encrypt_b64 = RSAEncryptB64;
HTML代码部分:
复制代码 代码如下:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>JavaScript RSA Encryption Demo</title>
</head>
<script language="JavaScript" type="text/javascript" src="/UploadFiles/2021-04-02/jsbn.js"><script language="JavaScript" type="text/javascript" src="/UploadFiles/2021-04-02/prng4.js"><script language="JavaScript" type="text/javascript" src="/UploadFiles/2021-04-02/rng.js"><script language="JavaScript" type="text/javascript" src="/UploadFiles/2021-04-02/rsa.js"><script language="JavaScript" type="text/javascript" src="/UploadFiles/2021-04-02/base64.js"><script language="JavaScript">
//publc key and public length 16 binary data
var public_key="00b0c2732193eebde5b2e278736a22977a5ee1bb99bea18c0681ad97484b4c7f681e963348eb80667b954534293b0a6cbe2f9651fc98c9ee833f343e719c97c670ead8bec704282f94d9873e083cfd41554f356f00aea38d2b07551733541b64790c2c8f400486fd662a3e95fd5edd2acf4d59ca97fad65cc59b8d10cbc5430c53";
var public_length="10001";
function do_encrypt() {
var before = new Date();
var rsa = new RSAKey();
rsa.setPublic(public_key, public_length);
var res = rsa.encrypt(document.rsatest.plaintext.value);
var after = new Date();
if(res) {
document.rsatest.ciphertext.value =res;
document.rsatest.cipherb64.value = hex2b64(res);
document.rsatest.status.value = "Time: " + (after - before) + "ms";
}
}
//-->
</script>
<form name="rsatest" action="rsa-example.php" method="post">
Plaintext (string):<br>
<input name="plaintext" type="text" value="test" size=40>
<input type="button" value="encrypt" onClick="do_encrypt();"><p>
Ciphertext (hex):<br>
<textarea name="ciphertext" rows=4 cols=70></textarea><p>
Ciphertext (base64):(Not used)<br>
<textarea name="cipherb64" rows=3 cols=70></textarea><p>
Status:<br>
<input name="status" type="text" size=40><p>
<input type="submit" value="go php" />
</form>
</body>
</html>
后端PHP部分:
RSA库:
复制代码 代码如下:
<?php
/*
* PHP implementation of the RSA algorithm
* (C) Copyright 2004 Edsko de Vries, Ireland
*
* Licensed under the GNU Public License (GPL)
*
* This implementation has been verified against [3]
* (tested Java/PHP interoperability).
*
* References:
* [1] "Applied Cryptography", Bruce Schneier, John Wiley & Sons, 1996
* [2] "Prime Number Hide-and-Seek", Brian Raiter, Muppetlabs (online)
* [3] "The Bouncy Castle Crypto Package", Legion of the Bouncy Castle,
* (open source cryptography library for Java, online)
* [4] "PKCS #1: RSA Encryption Standard", RSA Laboratories Technical Note,
* version 1.5, revised November 1, 1993
*/
/*
* Functions that are meant to be used by the user of this PHP module.
*
* Notes:
* - $key and $modulus should be numbers in (decimal) string format
* - $message is expected to be binary data
* - $keylength should be a multiple of 8, and should be in bits
* - For rsa_encrypt/rsa_sign, the length of $message should not exceed
* ($keylength / 8) - 11 (as mandated by [4]).
* - rsa_encrypt and rsa_sign will automatically add padding to the message.
* For rsa_encrypt, this padding will consist of random values; for rsa_sign,
* padding will consist of the appropriate number of 0xFF values (see [4])
* - rsa_decrypt and rsa_verify will automatically remove message padding.
* - Blocks for decoding (rsa_decrypt, rsa_verify) should be exactly
* ($keylength / 8) bytes long.
* - rsa_encrypt and rsa_verify expect a public key; rsa_decrypt and rsa_sign
* expect a private key.
*/
/**
* 于2010-11-12 1:06分于LONELY修改
*/
function rsa_encrypt($message, $public_key, $modulus, $keylength)
{
$padded = add_PKCS1_padding($message, true, $keylength / 8);
$number = binary_to_number($padded);
$encrypted = pow_mod($number, $public_key, $modulus);
$result = number_to_binary($encrypted, $keylength / 8);
return $result;
}
function rsa_decrypt($message, $private_key, $modulus, $keylength)
{
$number = binary_to_number($message);
$decrypted = pow_mod($number, $private_key, $modulus);
$result = number_to_binary($decrypted, $keylength / 8);
return remove_PKCS1_padding($result, $keylength / 8);
}
function rsa_sign($message, $private_key, $modulus, $keylength)
{
$padded = add_PKCS1_padding($message, false, $keylength / 8);
$number = binary_to_number($padded);
$signed = pow_mod($number, $private_key, $modulus);
$result = number_to_binary($signed, $keylength / 8);
return $result;
}
function rsa_verify($message, $public_key, $modulus, $keylength)
{
return rsa_decrypt($message, $public_key, $modulus, $keylength);
}
function rsa_kyp_verify($message, $public_key, $modulus, $keylength)
{
$number = binary_to_number($message);
$decrypted = pow_mod($number, $public_key, $modulus);
$result = number_to_binary($decrypted, $keylength / 8);
return remove_KYP_padding($result, $keylength / 8);
}
/*
* Some constants
*/
define("BCCOMP_LARGER", 1);
/*
* The actual implementation.
* Requires BCMath support in PHP (compile with --enable-bcmath)
*/
//--
// Calculate (p ^ q) mod r
//
// We need some trickery to [2]:
// (a) Avoid calculating (p ^ q) before (p ^ q) mod r, because for typical RSA
// applications, (p ^ q) is going to be _WAY_ too large.
// (I mean, __WAY__ too large - won't fit in your computer's memory.)
// (b) Still be reasonably efficient.
//
// We assume p, q and r are all positive, and that r is non-zero.
//
// Note that the more simple algorithm of multiplying $p by itself $q times, and
// applying "mod $r" at every step is also valid, but is O($q), whereas this
// algorithm is O(log $q). Big difference.
//
// As far as I can see, the algorithm I use is optimal; there is no redundancy
// in the calculation of the partial results.
//--
function pow_mod($p, $q, $r)
{
// Extract powers of 2 from $q
$factors = array();
$div = $q;
$power_of_two = 0;
while(bccomp($div, "0") == BCCOMP_LARGER)
{
$rem = bcmod($div, 2);
$div = bcdiv($div, 2);
if($rem) array_push($factors, $power_of_two);
$power_of_two++;
}
// Calculate partial results for each factor, using each partial result as a
// starting point for the next. This depends of the factors of two being
// generated in increasing order.
$partial_results = array();
$part_res = $p;
$idx = 0;
foreach($factors as $factor)
{
while($idx < $factor)
{
$part_res = bcpow($part_res, "2");
$part_res = bcmod($part_res, $r);
$idx++;
}
array_push($partial_results, $part_res);
}
// Calculate final result
$result = "1";
foreach($partial_results as $part_res)
{
$result = bcmul($result, $part_res);
$result = bcmod($result, $r);
}
return $result;
}
//--
// Function to add padding to a decrypted string
// We need to know if this is a private or a public key operation [4]
//--
function add_PKCS1_padding($data, $isPublicKey, $blocksize)
{
$pad_length = $blocksize - 3 - strlen($data);
if($isPublicKey)
{
$block_type = "\x02";
$padding = "";
for($i = 0; $i < $pad_length; $i++)
{
$rnd = mt_rand(1, 255);
$padding .= chr($rnd);
}
}
else
{
$block_type = "\x01";
$padding = str_repeat("\xFF", $pad_length);
}
return "\x00" . $block_type . $padding . "\x00" . $data;
}
//--
// Remove padding from a decrypted string
// See [4] for more details.
//--
function remove_PKCS1_padding($data, $blocksize)
{
//以下部分于原版的RSA有所不同,修复了原版的一个BUG
//assert(strlen($data) == $blocksize);
$data = substr($data, 1);
// We cannot deal with block type 0
if($data{0} == '\0')
die("Block type 0 not implemented.");
// Then the block type must be 1 or 2
//assert(($data{0} == "\x01") || ($data{0} == "\x02"));
// echo $data;
// Remove the padding
$i=1;
while (1){
$offset = strpos($data, "\0", $i);
if(!$offset){
$offset=$i;
break;
}
$i=$offset+1;
}
//$offset = strpos($data, "\0", 100);
return substr($data, $offset);
}
//--
// Remove "kyp" padding
// (Non standard)
//--
function remove_KYP_padding($data, $blocksize)
{
assert(strlen($data) == $blocksize);
$offset = strpos($data, "\0");
return substr($data, 0, $offset);
}
//--
// Convert binary data to a decimal number
//--
function binary_to_number($data)
{
$base = "256";
$radix = "1";
$result = "0";
for($i = strlen($data) - 1; $i >= 0; $i--)
{
$digit = ord($data{$i});
$part_res = bcmul($digit, $radix);
$result = bcadd($result, $part_res);
$radix = bcmul($radix, $base);
}
return $result;
}
//--
// Convert a number back into binary form
//--
function number_to_binary($number, $blocksize)
{
$base = "256";
$result = "";
$div = $number;
while($div > 0)
{
$mod = bcmod($div, $base);
$div = bcdiv($div, $base);
$result = chr($mod) . $result;
}
return str_pad($result, $blocksize, "\x00", STR_PAD_LEFT);
}
?>
处理的PHP代码:
复制代码 代码如下:
<?php
//Decimal Data
include "rsa.php";
$modulus='124124790696783899579957666732205416556275207289308772677367395397704314099727565633927507139389670490184904760526156031441045563225987129220634807383637837918320623518532877734472159024203477820731033762885040862183213160281165618500092483026873487507336293388981515466164416989192069833140532570993394388051.0000000000';
$private='59940207454900542501281722336097731406274284149290386158861762508911700758780200454438527029729836453810395133453343700246367853044479311924174899432036400630350527132581124575735909908195078492323048176864577497230467497768502277772070557874686662727818507841304646138785432507752788647631021854537869399041.0000000000';
$public="65537";
$keylength="1024";
//php encrypt create
//$encrypted = rsa_encrypt("vzxcvz bdxf", $public, $modulus, $keylength);
//$str= bin2hex($encrypted);//bin data to hex data
$str=$_POST['ciphertext'];
//echo $str."<br>";
$encrypted=convert($str); //hex data to bin data
$decrypted = rsa_decrypt($encrypted, $private, $modulus, $keylength);
echo $decrypted."<br>";
/**
* 16 to 2
* @param unknown_type $hexString
* @return string|unknown
*/
function convert($hexString)
{
$hexLenght = strlen($hexString);
// only hex numbers is allowed
if ($hexLenght % 2 != 0 || preg_match("/[^\da-fA-F]/",$hexString)) return FALSE;
unset($binString);
for ($x = 1; $x <= $hexLenght/2; $x++)
{
$binString .= chr(hexdec(substr($hexString,2 * $x - 2,2)));
}
return $binString;
}
?>
生成PRM文件及生产需要的密钥及公钥的PHP文件:
复制代码 代码如下:
<?php
//create pem file
//run openssl genrsa -out key.pem 1024
//This file is generated variables needed for the operation
list($keylength, $modulus, $public, $private,$modulus_js,$private_js) = read_ssl_key("key.pem");
echo "keylength:(php and js)(private length)<br>";
echo $keylength;
echo "<br>";
echo "modulus:(php)(10)(pubic key)<br>";
echo $modulus;
echo "<br>";
echo "modulus:(js)(16)(pubic key)<br>";
echo $modulus_js;
echo "<br>";
echo "public:(php)(10)(public exponent)<br>";
echo $public;
echo "<br>";
echo "public:(js)(16)(public exponent)<br>";
echo "10001";
echo "<br>";
echo "private:(php)(10)(private key)<br>";
echo $private;
echo "<br>";
echo "private:(js)(16)(private key)<br>";
echo $private_js;
//function
function read_ssl_key($filename)
{
exec("openssl rsa -in $filename -text -noout", $raw);
// read the key length
$keylength = (int) expect($raw[0], "Private-Key: (");
// read the modulus
expect($raw[1], "modulus:");
for($i = 2; $raw[$i][0] == ' '; $i++) $modulusRaw .= trim($raw[$i]);
// read the public exponent
$public = (int) expect($raw[$i], "publicExponent: ");
// read the private exponent
expect($raw[$i + 1], "privateExponent:");
for($i += 2; $raw[$i][0] == ' '; $i++) $privateRaw .= trim($raw[$i]);
// Just to make sure
expect($raw[$i], "prime1:");
// Conversion to decimal format for bcmath
$modulus = bc_hexdec($modulusRaw);
$private = bc_hexdec($privateRaw);
return array($keylength, $modulus['php'], $public, $private['php'],$modulus['js'], $private['js']);
}
/*
* Convert a hexadecimal number of the form "XX:YY:ZZ:..." to decimal
* Uses BCmath, but the standard normal hexdec function for the components
*/
function bc_hexdec($hex)
{
$coefficients = explode(":", $hex);
$result_js= implode("",$coefficients);
$i = 0;
$result = 0;
foreach(array_reverse($coefficients) as $coefficient)
{
$mult = bcpow(256, $i++);
$result = bcadd($result, bcmul(hexdec($coefficient), $mult));
}
return array('php'=>$result,'js'=>$result_js);
}
/*
* If the string has the given prefix, return the remainder.
* If not, die with an error
*/
function expect($str, $prefix)
{
if(substr($str, 0, strlen($prefix)) == $prefix)
return substr($str, strlen($prefix));
else
die("Error: expected $prefix");
}
整套加密及解密的方法都在上面了,本人的测试环境为php5.3+WIN7
上面所有文件下载:RSAFILE
复制代码 代码如下:
//文件base64.js:
var b64map="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var b64pad="=";
function hex2b64(h) {
var i;
var c;
var ret = "";
for(i = 0; i+3 <= h.length; i+=3) {
c = parseInt(h.substring(i,i+3),16);
ret += b64map.charAt(c 6) + b64map.charAt(c & 63);
}
if(i+1 == h.length) {
c = parseInt(h.substring(i,i+1),16);
ret += b64map.charAt(c << 2);
}
else if(i+2 == h.length) {
c = parseInt(h.substring(i,i+2),16);
ret += b64map.charAt(c 2) + b64map.charAt((c & 3) << 4);
}
while((ret.length & 3) > 0) ret += b64pad;
return ret;
}
// convert a base64 string to hex
function b64tohex(s) {
var ret = ""
var i;
var k = 0; // b64 state, 0-3
var slop;
for(i = 0; i < s.length; ++i) {
if(s.charAt(i) == b64pad) break;
v = b64map.indexOf(s.charAt(i));
if(v < 0) continue;
if(k == 0) {
ret += int2char(v 2);
slop = v & 3;
k = 1;
}
else if(k == 1) {
ret += int2char((slop << 2) | (v 4));
slop = v & 0xf;
k = 2;
}
else if(k == 2) {
ret += int2char(slop);
ret += int2char(v 2);
slop = v & 3;
k = 3;
}
else {
ret += int2char((slop << 2) | (v 4));
ret += int2char(v & 0xf);
k = 0;
}
}
if(k == 1)
ret += int2char(slop << 2);
return ret;
}
// convert a base64 string to a byte/number array
function b64toBA(s) {
//piggyback on b64tohex for now, optimize later
var h = b64tohex(s);
var i;
var a = new Array();
for(i = 0; 2*i < h.length; ++i) {
a[i] = parseInt(h.substring(2*i,2*i+2),16);
}
return a;
}
#文件jsbn.js
// Copyright (c) 2005 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Basic JavaScript BN library - subset useful for RSA encryption.
// Bits per digit
var dbits;
// JavaScript engine analysis
var canary = 0xdeadbeefcafe;
var j_lm = ((canary&0xffffff)==0xefcafe);
// (public) Constructor
function BigInteger(a,b,c) {
if(a != null)
if("number" == typeof a) this.fromNumber(a,b,c);
else if(b == null && "string" != typeof a) this.fromString(a,256);
else this.fromString(a,b);
}
// return new, unset BigInteger
function nbi() { return new BigInteger(null); }
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i,x,w,j,c,n) {
while(--n >= 0) {
var v = x*this[i++]+w[j]+c;
c = Math.floor(v/0x4000000);
w[j++] = v&0x3ffffff;
}
return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i,x,w,j,c,n) {
var xl = x&0x7fff, xh = x15;
while(--n >= 0) {
var l = this[i]&0x7fff;
var h = this[i++]15;
var m = xh*l+h*xl;
l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
c = (l>30)+(m>15)+xh*h+(c>30);
w[j++] = l&0x3fffffff;
}
return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i,x,w,j,c,n) {
var xl = x&0x3fff, xh = x14;
while(--n >= 0) {
var l = this[i]&0x3fff;
var h = this[i++]14;
var m = xh*l+h*xl;
l = xl*l+((m&0x3fff)<<14)+w[j]+c;
c = (l28)+(m14)+xh*h;
w[j++] = l&0xfffffff;
}
return c;
}
if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
BigInteger.prototype.am = am2;
dbits = 30;
}
else if(j_lm && (navigator.appName != "Netscape")) {
BigInteger.prototype.am = am1;
dbits = 26;
}
else { // Mozilla/Netscape seems to prefer am3
BigInteger.prototype.am = am3;
dbits = 28;
}
BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = ((1<<dbits)-1);
BigInteger.prototype.DV = (1<<dbits);
var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2,BI_FP);
BigInteger.prototype.F1 = BI_FP-dbits;
BigInteger.prototype.F2 = 2*dbits-BI_FP;
// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
var rr,vv;
rr = "0".charCodeAt(0);
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
rr = "a".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
rr = "A".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
function int2char(n) { return BI_RM.charAt(n); }
function intAt(s,i) {
var c = BI_RC[s.charCodeAt(i)];
return (c==null)?-1:c;
}
// (protected) copy this to r
function bnpCopyTo(r) {
for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
r.t = this.t;
r.s = this.s;
}
// (protected) set from integer value x, -DV <= x < DV
function bnpFromInt(x) {
this.t = 1;
this.s = (x<0)?-1:0;
if(x > 0) this[0] = x;
else if(x < -1) this[0] = x+DV;
else this.t = 0;
}
// return bigint initialized to value
function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
// (protected) set from string and radix
function bnpFromString(s,b) {
var k;
if(b == 16) k = 4;
else if(b == 8) k = 3;
else if(b == 256) k = 8; // byte array
else if(b == 2) k = 1;
else if(b == 32) k = 5;
else if(b == 4) k = 2;
else { this.fromRadix(s,b); return; }
this.t = 0;
this.s = 0;
var i = s.length, mi = false, sh = 0;
while(--i >= 0) {
var x = (k==8)?s[i]&0xff:intAt(s,i);
if(x < 0) {
if(s.charAt(i) == "-") mi = true;
continue;
}
mi = false;
if(sh == 0)
this[this.t++] = x;
else if(sh+k > this.DB) {
this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
this[this.t++] = (x(this.DB-sh));
}
else
this[this.t-1] |= x<<sh;
sh += k;
if(sh >= this.DB) sh -= this.DB;
}
if(k == 8 && (s[0]&0x80) != 0) {
this.s = -1;
if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
}
this.clamp();
if(mi) BigInteger.ZERO.subTo(this,this);
}
// (protected) clamp off excess high words
function bnpClamp() {
var c = this.s&this.DM;
while(this.t > 0 && this[this.t-1] == c) --this.t;
}
// (public) return string representation in given radix
function bnToString(b) {
if(this.s < 0) return "-"+this.negate().toString(b);
var k;
if(b == 16) k = 4;
else if(b == 8) k = 3;
else if(b == 2) k = 1;
else if(b == 32) k = 5;
else if(b == 4) k = 2;
else return this.toRadix(b);
var km = (1<<k)-1, d, m = false, r = "", i = this.t;
var p = this.DB-(i*this.DB)%k;
if(i-- > 0) {
if(p < this.DB && (d = this[i]p) > 0) { m = true; r = int2char(d); }
while(i >= 0) {
if(p < k) {
d = (this[i]&((1<<p)-1))<<(k-p);
d |= this[--i](p+=this.DB-k);
}
else {
d = (this[i](p-=k))&km;
if(p <= 0) { p += this.DB; --i; }
}
if(d > 0) m = true;
if(m) r += int2char(d);
}
}
return m?r:"0";
}
// (public) -this
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
// (public) |this|
function bnAbs() { return (this.s<0)?this.negate():this; }
// (public) return + if this > a, - if this < a, 0 if equal
function bnCompareTo(a) {
var r = this.s-a.s;
if(r != 0) return r;
var i = this.t;
r = i-a.t;
if(r != 0) return r;
while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
return 0;
}
// returns bit length of the integer x
function nbits(x) {
var r = 1, t;
if((t=x>16) != 0) { x = t; r += 16; }
if((t=x8) != 0) { x = t; r += 8; }
if((t=x4) != 0) { x = t; r += 4; }
if((t=x2) != 0) { x = t; r += 2; }
if((t=x1) != 0) { x = t; r += 1; }
return r;
}
// (public) return the number of bits in "this"
function bnBitLength() {
if(this.t <= 0) return 0;
return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
}
// (protected) r = this << n*DB
function bnpDLShiftTo(n,r) {
var i;
for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
for(i = n-1; i >= 0; --i) r[i] = 0;
r.t = this.t+n;
r.s = this.s;
}
// (protected) r = this n*DB
function bnpDRShiftTo(n,r) {
for(var i = n; i < this.t; ++i) r[i-n] = this[i];
r.t = Math.max(this.t-n,0);
r.s = this.s;
}
// (protected) r = this << n
function bnpLShiftTo(n,r) {
var bs = n%this.DB;
var cbs = this.DB-bs;
var bm = (1<<cbs)-1;
var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
for(i = this.t-1; i >= 0; --i) {
r[i+ds+1] = (this[i]cbs)|c;
c = (this[i]&bm)<<bs;
}
for(i = ds-1; i >= 0; --i) r[i] = 0;
r[ds] = c;
r.t = this.t+ds+1;
r.s = this.s;
r.clamp();
}
// (protected) r = this n
function bnpRShiftTo(n,r) {
r.s = this.s;
var ds = Math.floor(n/this.DB);
if(ds >= this.t) { r.t = 0; return; }
var bs = n%this.DB;
var cbs = this.DB-bs;
var bm = (1<<bs)-1;
r[0] = this[ds]bs;
for(var i = ds+1; i < this.t; ++i) {
r[i-ds-1] |= (this[i]&bm)<<cbs;
r[i-ds] = this[i]bs;
}
if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
r.t = this.t-ds;
r.clamp();
}
// (protected) r = this - a
function bnpSubTo(a,r) {
var i = 0, c = 0, m = Math.min(a.t,this.t);
while(i < m) {
c += this[i]-a[i];
r[i++] = c&this.DM;
c = this.DB;
}
if(a.t < this.t) {
c -= a.s;
while(i < this.t) {
c += this[i];
r[i++] = c&this.DM;
c = this.DB;
}
c += this.s;
}
else {
c += this.s;
while(i < a.t) {
c -= a[i];
r[i++] = c&this.DM;
c = this.DB;
}
c -= a.s;
}
r.s = (c<0)?-1:0;
if(c < -1) r[i++] = this.DV+c;
else if(c > 0) r[i++] = c;
r.t = i;
r.clamp();
}
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
function bnpMultiplyTo(a,r) {
var x = this.abs(), y = a.abs();
var i = x.t;
r.t = i+y.t;
while(--i >= 0) r[i] = 0;
for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
r.s = 0;
r.clamp();
if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
}
// (protected) r = this^2, r != this (HAC 14.16)
function bnpSquareTo(r) {
var x = this.abs();
var i = r.t = 2*x.t;
while(--i >= 0) r[i] = 0;
for(i = 0; i < x.t-1; ++i) {
var c = x.am(i,x[i],r,2*i,0,1);
if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
r[i+x.t] -= x.DV;
r[i+x.t+1] = 1;
}
}
if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
r.s = 0;
r.clamp();
}
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
function bnpDivRemTo(m,q,r) {
var pm = m.abs();
if(pm.t <= 0) return;
var pt = this.abs();
if(pt.t < pm.t) {
if(q != null) q.fromInt(0);
if(r != null) this.copyTo(r);
return;
}
if(r == null) r = nbi();
var y = nbi(), ts = this.s, ms = m.s;
var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
else { pm.copyTo(y); pt.copyTo(r); }
var ys = y.t;
var y0 = y[ys-1];
if(y0 == 0) return;
var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]this.F2:0);
var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
var i = r.t, j = i-ys, t = (q==null)?nbi():q;
y.dlShiftTo(j,t);
if(r.compareTo(t) >= 0) {
r[r.t++] = 1;
r.subTo(t,r);
}
BigInteger.ONE.dlShiftTo(ys,t);
t.subTo(y,y); // "negative" y so we can replace sub with am later
while(y.t < ys) y[y.t++] = 0;
while(--j >= 0) {
// Estimate quotient digit
var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
y.dlShiftTo(j,t);
r.subTo(t,r);
while(r[i] < --qd) r.subTo(t,r);
}
}
if(q != null) {
r.drShiftTo(ys,q);
if(ts != ms) BigInteger.ZERO.subTo(q,q);
}
r.t = ys;
r.clamp();
if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
if(ts < 0) BigInteger.ZERO.subTo(r,r);
}
// (public) this mod a
function bnMod(a) {
var r = nbi();
this.abs().divRemTo(a,null,r);
if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
return r;
}
// Modular reduction using "classic" algorithm
function Classic(m) { this.m = m; }
function cConvert(x) {
if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
else return x;
}
function cRevert(x) { return x; }
function cReduce(x) { x.divRemTo(this.m,null,x); }
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
Classic.prototype.convert = cConvert;
Classic.prototype.revert = cRevert;
Classic.prototype.reduce = cReduce;
Classic.prototype.mulTo = cMulTo;
Classic.prototype.sqrTo = cSqrTo;
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
function bnpInvDigit() {
if(this.t < 1) return 0;
var x = this[0];
if((x&1) == 0) return 0;
var y = x&3; // y == 1/x mod 2^2
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y>0)?this.DV-y:-y;
}
// Montgomery reduction
function Montgomery(m) {
this.m = m;
this.mp = m.invDigit();
this.mpl = this.mp&0x7fff;
this.mph = this.mp15;
this.um = (1<<(m.DB-15))-1;
this.mt2 = 2*m.t;
}
// xR mod m
function montConvert(x) {
var r = nbi();
x.abs().dlShiftTo(this.m.t,r);
r.divRemTo(this.m,null,r);
if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
return r;
}
// x/R mod m
function montRevert(x) {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
// x = x/R mod m (HAC 14.32)
function montReduce(x) {
while(x.t <= this.mt2) // pad x so am has enough room later
x[x.t++] = 0;
for(var i = 0; i < this.m.t; ++i) {
// faster way of calculating u0 = x[i]*mp mod DV
var j = x[i]&0x7fff;
var u0 = (j*this.mpl+(((j*this.mph+(x[i]15)*this.mpl)&this.um)<<15))&x.DM;
// use am to combine the multiply-shift-add into one call
j = i+this.m.t;
x[j] += this.m.am(0,u0,x,i,0,this.m.t);
// propagate carry
while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
}
x.clamp();
x.drShiftTo(this.m.t,x);
if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
}
// r = "x^2/R mod m"; x != r
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
// r = "xy/R mod m"; x,y != r
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
Montgomery.prototype.convert = montConvert;
Montgomery.prototype.revert = montRevert;
Montgomery.prototype.reduce = montReduce;
Montgomery.prototype.mulTo = montMulTo;
Montgomery.prototype.sqrTo = montSqrTo;
// (protected) true iff this is even
function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
function bnpExp(e,z) {
if(e > 0xffffffff || e < 1) return BigInteger.ONE;
var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
g.copyTo(r);
while(--i >= 0) {
z.sqrTo(r,r2);
if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
else { var t = r; r = r2; r2 = t; }
}
return z.revert(r);
}
// (public) this^e % m, 0 <= e < 2^32
function bnModPowInt(e,m) {
var z;
if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
return this.exp(e,z);
}
// protected
BigInteger.prototype.copyTo = bnpCopyTo;
BigInteger.prototype.fromInt = bnpFromInt;
BigInteger.prototype.fromString = bnpFromString;
BigInteger.prototype.clamp = bnpClamp;
BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
BigInteger.prototype.drShiftTo = bnpDRShiftTo;
BigInteger.prototype.lShiftTo = bnpLShiftTo;
BigInteger.prototype.rShiftTo = bnpRShiftTo;
BigInteger.prototype.subTo = bnpSubTo;
BigInteger.prototype.multiplyTo = bnpMultiplyTo;
BigInteger.prototype.squareTo = bnpSquareTo;
BigInteger.prototype.divRemTo = bnpDivRemTo;
BigInteger.prototype.invDigit = bnpInvDigit;
BigInteger.prototype.isEven = bnpIsEven;
BigInteger.prototype.exp = bnpExp;
// public
BigInteger.prototype.toString = bnToString;
BigInteger.prototype.negate = bnNegate;
BigInteger.prototype.abs = bnAbs;
BigInteger.prototype.compareTo = bnCompareTo;
BigInteger.prototype.bitLength = bnBitLength;
BigInteger.prototype.mod = bnMod;
BigInteger.prototype.modPowInt = bnModPowInt;
// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1);
#文件prng4.js
// prng4.js - uses Arcfour as a PRNG
function Arcfour() {
this.i = 0;
this.j = 0;
this.S = new Array();
}
// Initialize arcfour context from key, an array of ints, each from [0..255]
function ARC4init(key) {
var i, j, t;
for(i = 0; i < 256; ++i)
this.S[i] = i;
j = 0;
for(i = 0; i < 256; ++i) {
j = (j + this.S[i] + key[i % key.length]) & 255;
t = this.S[i];
this.S[i] = this.S[j];
this.S[j] = t;
}
this.i = 0;
this.j = 0;
}
function ARC4next() {
var t;
this.i = (this.i + 1) & 255;
this.j = (this.j + this.S[this.i]) & 255;
t = this.S[this.i];
this.S[this.i] = this.S[this.j];
this.S[this.j] = t;
return this.S[(t + this.S[this.i]) & 255];
}
Arcfour.prototype.init = ARC4init;
Arcfour.prototype.next = ARC4next;
// Plug in your RNG constructor here
function prng_newstate() {
return new Arcfour();
}
// Pool size must be a multiple of 4 and greater than 32.
// An array of bytes the size of the pool will be passed to init()
var rng_psize = 256;
文件:rng.js
// Random number generator - requires a PRNG backend, e.g. prng4.js
// For best results, put code like
// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
// in your main HTML document.
var rng_state;
var rng_pool;
var rng_pptr;
// Mix in a 32-bit integer into the pool
function rng_seed_int(x) {
rng_pool[rng_pptr++] ^= x & 255;
rng_pool[rng_pptr++] ^= (x 8) & 255;
rng_pool[rng_pptr++] ^= (x 16) & 255;
rng_pool[rng_pptr++] ^= (x 24) & 255;
if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;
}
// Mix in the current time (w/milliseconds) into the pool
function rng_seed_time() {
rng_seed_int(new Date().getTime());
}
// Initialize the pool with junk if needed.
if(rng_pool == null) {
rng_pool = new Array();
rng_pptr = 0;
var t;
if(navigator.appName == "Netscape" && navigator.appVersion < "5" && window.crypto) {
// Extract entropy (256 bits) from NS4 RNG if available
var z = window.crypto.random(32);
for(t = 0; t < z.length; ++t)
rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
}
while(rng_pptr < rng_psize) { // extract some randomness from Math.random()
t = Math.floor(65536 * Math.random());
rng_pool[rng_pptr++] = t > 8;
rng_pool[rng_pptr++] = t & 255;
}
rng_pptr = 0;
rng_seed_time();
//rng_seed_int(window.screenX);
//rng_seed_int(window.screenY);
}
function rng_get_byte() {
if(rng_state == null) {
rng_seed_time();
rng_state = prng_newstate();
rng_state.init(rng_pool);
for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
rng_pool[rng_pptr] = 0;
rng_pptr = 0;
//rng_pool = null;
}
// TODO: allow reseeding after first request
return rng_state.next();
}
function rng_get_bytes(ba) {
var i;
for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
}
function SecureRandom() {}
SecureRandom.prototype.nextBytes = rng_get_bytes;
#文件:rsa.js
// Depends on jsbn.js and rng.js
// Version 1.1: support utf-8 encoding in pkcs1pad2
// convert a (hex) string to a bignum object
function parseBigInt(str,r) {
return new BigInteger(str,r);
}
function linebrk(s,n) {
var ret = "";
var i = 0;
while(i + n < s.length) {
ret += s.substring(i,i+n) + "\n";
i += n;
}
return ret + s.substring(i,s.length);
}
function byte2Hex(b) {
if(b < 0x10)
return "0" + b.toString(16);
else
return b.toString(16);
}
// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
function pkcs1pad2(s,n) {
if(n < s.length + 11) { // TODO: fix for utf-8
alert("Message too long for RSA");
return null;
}
var ba = new Array();
var i = s.length - 1;
while(i >= 0 && n > 0) {
var c = s.charCodeAt(i--);
if(c < 128) { // encode using utf-8
ba[--n] = c;
}
else if((c > 127) && (c < 2048)) {
ba[--n] = (c & 63) | 128;
ba[--n] = (c 6) | 192;
}
else {
ba[--n] = (c & 63) | 128;
ba[--n] = ((c 6) & 63) | 128;
ba[--n] = (c 12) | 224;
}
}
ba[--n] = 0;
var rng = new SecureRandom();
var x = new Array();
while(n > 2) { // random non-zero pad
x[0] = 0;
while(x[0] == 0) rng.nextBytes(x);
ba[--n] = x[0];
}
ba[--n] = 2;
ba[--n] = 0;
return new BigInteger(ba);
}
// "empty" RSA key constructor
function RSAKey() {
this.n = null;
this.e = 0;
this.d = null;
this.p = null;
this.q = null;
this.dmp1 = null;
this.dmq1 = null;
this.coeff = null;
}
// Set the public key fields N and e from hex strings
function RSASetPublic(N,E) {
if(N != null && E != null && N.length > 0 && E.length > 0) {
this.n = parseBigInt(N,16);
this.e = parseInt(E,16);
}
else
alert("Invalid RSA public key");
}
// Perform raw public operation on "x": return x^e (mod n)
function RSADoPublic(x) {
return x.modPowInt(this.e, this.n);
}
// Return the PKCS#1 RSA encryption of "text" as an even-length hex string
function RSAEncrypt(text) {
var m = pkcs1pad2(text,(this.n.bitLength()+7)3);
if(m == null) return null;
var c = this.doPublic(m);
if(c == null) return null;
var h = c.toString(16);
if((h.length & 1) == 0) return h; else return "0" + h;
}
// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
//function RSAEncryptB64(text) {
// var h = this.encrypt(text);
// if(h) return hex2b64(h); else return null;
//}
// protected
RSAKey.prototype.doPublic = RSADoPublic;
// public
RSAKey.prototype.setPublic = RSASetPublic;
RSAKey.prototype.encrypt = RSAEncrypt;
//RSAKey.prototype.encrypt_b64 = RSAEncryptB64;
HTML代码部分:
复制代码 代码如下:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>JavaScript RSA Encryption Demo</title>
</head>
<script language="JavaScript" type="text/javascript" src="/UploadFiles/2021-04-02/jsbn.js"><script language="JavaScript" type="text/javascript" src="/UploadFiles/2021-04-02/prng4.js"><script language="JavaScript" type="text/javascript" src="/UploadFiles/2021-04-02/rng.js"><script language="JavaScript" type="text/javascript" src="/UploadFiles/2021-04-02/rsa.js"><script language="JavaScript" type="text/javascript" src="/UploadFiles/2021-04-02/base64.js"><script language="JavaScript">
//publc key and public length 16 binary data
var public_key="00b0c2732193eebde5b2e278736a22977a5ee1bb99bea18c0681ad97484b4c7f681e963348eb80667b954534293b0a6cbe2f9651fc98c9ee833f343e719c97c670ead8bec704282f94d9873e083cfd41554f356f00aea38d2b07551733541b64790c2c8f400486fd662a3e95fd5edd2acf4d59ca97fad65cc59b8d10cbc5430c53";
var public_length="10001";
function do_encrypt() {
var before = new Date();
var rsa = new RSAKey();
rsa.setPublic(public_key, public_length);
var res = rsa.encrypt(document.rsatest.plaintext.value);
var after = new Date();
if(res) {
document.rsatest.ciphertext.value =res;
document.rsatest.cipherb64.value = hex2b64(res);
document.rsatest.status.value = "Time: " + (after - before) + "ms";
}
}
//-->
</script>
<form name="rsatest" action="rsa-example.php" method="post">
Plaintext (string):<br>
<input name="plaintext" type="text" value="test" size=40>
<input type="button" value="encrypt" onClick="do_encrypt();"><p>
Ciphertext (hex):<br>
<textarea name="ciphertext" rows=4 cols=70></textarea><p>
Ciphertext (base64):(Not used)<br>
<textarea name="cipherb64" rows=3 cols=70></textarea><p>
Status:<br>
<input name="status" type="text" size=40><p>
<input type="submit" value="go php" />
</form>
</body>
</html>
后端PHP部分:
RSA库:
复制代码 代码如下:
<?php
/*
* PHP implementation of the RSA algorithm
* (C) Copyright 2004 Edsko de Vries, Ireland
*
* Licensed under the GNU Public License (GPL)
*
* This implementation has been verified against [3]
* (tested Java/PHP interoperability).
*
* References:
* [1] "Applied Cryptography", Bruce Schneier, John Wiley & Sons, 1996
* [2] "Prime Number Hide-and-Seek", Brian Raiter, Muppetlabs (online)
* [3] "The Bouncy Castle Crypto Package", Legion of the Bouncy Castle,
* (open source cryptography library for Java, online)
* [4] "PKCS #1: RSA Encryption Standard", RSA Laboratories Technical Note,
* version 1.5, revised November 1, 1993
*/
/*
* Functions that are meant to be used by the user of this PHP module.
*
* Notes:
* - $key and $modulus should be numbers in (decimal) string format
* - $message is expected to be binary data
* - $keylength should be a multiple of 8, and should be in bits
* - For rsa_encrypt/rsa_sign, the length of $message should not exceed
* ($keylength / 8) - 11 (as mandated by [4]).
* - rsa_encrypt and rsa_sign will automatically add padding to the message.
* For rsa_encrypt, this padding will consist of random values; for rsa_sign,
* padding will consist of the appropriate number of 0xFF values (see [4])
* - rsa_decrypt and rsa_verify will automatically remove message padding.
* - Blocks for decoding (rsa_decrypt, rsa_verify) should be exactly
* ($keylength / 8) bytes long.
* - rsa_encrypt and rsa_verify expect a public key; rsa_decrypt and rsa_sign
* expect a private key.
*/
/**
* 于2010-11-12 1:06分于LONELY修改
*/
function rsa_encrypt($message, $public_key, $modulus, $keylength)
{
$padded = add_PKCS1_padding($message, true, $keylength / 8);
$number = binary_to_number($padded);
$encrypted = pow_mod($number, $public_key, $modulus);
$result = number_to_binary($encrypted, $keylength / 8);
return $result;
}
function rsa_decrypt($message, $private_key, $modulus, $keylength)
{
$number = binary_to_number($message);
$decrypted = pow_mod($number, $private_key, $modulus);
$result = number_to_binary($decrypted, $keylength / 8);
return remove_PKCS1_padding($result, $keylength / 8);
}
function rsa_sign($message, $private_key, $modulus, $keylength)
{
$padded = add_PKCS1_padding($message, false, $keylength / 8);
$number = binary_to_number($padded);
$signed = pow_mod($number, $private_key, $modulus);
$result = number_to_binary($signed, $keylength / 8);
return $result;
}
function rsa_verify($message, $public_key, $modulus, $keylength)
{
return rsa_decrypt($message, $public_key, $modulus, $keylength);
}
function rsa_kyp_verify($message, $public_key, $modulus, $keylength)
{
$number = binary_to_number($message);
$decrypted = pow_mod($number, $public_key, $modulus);
$result = number_to_binary($decrypted, $keylength / 8);
return remove_KYP_padding($result, $keylength / 8);
}
/*
* Some constants
*/
define("BCCOMP_LARGER", 1);
/*
* The actual implementation.
* Requires BCMath support in PHP (compile with --enable-bcmath)
*/
//--
// Calculate (p ^ q) mod r
//
// We need some trickery to [2]:
// (a) Avoid calculating (p ^ q) before (p ^ q) mod r, because for typical RSA
// applications, (p ^ q) is going to be _WAY_ too large.
// (I mean, __WAY__ too large - won't fit in your computer's memory.)
// (b) Still be reasonably efficient.
//
// We assume p, q and r are all positive, and that r is non-zero.
//
// Note that the more simple algorithm of multiplying $p by itself $q times, and
// applying "mod $r" at every step is also valid, but is O($q), whereas this
// algorithm is O(log $q). Big difference.
//
// As far as I can see, the algorithm I use is optimal; there is no redundancy
// in the calculation of the partial results.
//--
function pow_mod($p, $q, $r)
{
// Extract powers of 2 from $q
$factors = array();
$div = $q;
$power_of_two = 0;
while(bccomp($div, "0") == BCCOMP_LARGER)
{
$rem = bcmod($div, 2);
$div = bcdiv($div, 2);
if($rem) array_push($factors, $power_of_two);
$power_of_two++;
}
// Calculate partial results for each factor, using each partial result as a
// starting point for the next. This depends of the factors of two being
// generated in increasing order.
$partial_results = array();
$part_res = $p;
$idx = 0;
foreach($factors as $factor)
{
while($idx < $factor)
{
$part_res = bcpow($part_res, "2");
$part_res = bcmod($part_res, $r);
$idx++;
}
array_push($partial_results, $part_res);
}
// Calculate final result
$result = "1";
foreach($partial_results as $part_res)
{
$result = bcmul($result, $part_res);
$result = bcmod($result, $r);
}
return $result;
}
//--
// Function to add padding to a decrypted string
// We need to know if this is a private or a public key operation [4]
//--
function add_PKCS1_padding($data, $isPublicKey, $blocksize)
{
$pad_length = $blocksize - 3 - strlen($data);
if($isPublicKey)
{
$block_type = "\x02";
$padding = "";
for($i = 0; $i < $pad_length; $i++)
{
$rnd = mt_rand(1, 255);
$padding .= chr($rnd);
}
}
else
{
$block_type = "\x01";
$padding = str_repeat("\xFF", $pad_length);
}
return "\x00" . $block_type . $padding . "\x00" . $data;
}
//--
// Remove padding from a decrypted string
// See [4] for more details.
//--
function remove_PKCS1_padding($data, $blocksize)
{
//以下部分于原版的RSA有所不同,修复了原版的一个BUG
//assert(strlen($data) == $blocksize);
$data = substr($data, 1);
// We cannot deal with block type 0
if($data{0} == '\0')
die("Block type 0 not implemented.");
// Then the block type must be 1 or 2
//assert(($data{0} == "\x01") || ($data{0} == "\x02"));
// echo $data;
// Remove the padding
$i=1;
while (1){
$offset = strpos($data, "\0", $i);
if(!$offset){
$offset=$i;
break;
}
$i=$offset+1;
}
//$offset = strpos($data, "\0", 100);
return substr($data, $offset);
}
//--
// Remove "kyp" padding
// (Non standard)
//--
function remove_KYP_padding($data, $blocksize)
{
assert(strlen($data) == $blocksize);
$offset = strpos($data, "\0");
return substr($data, 0, $offset);
}
//--
// Convert binary data to a decimal number
//--
function binary_to_number($data)
{
$base = "256";
$radix = "1";
$result = "0";
for($i = strlen($data) - 1; $i >= 0; $i--)
{
$digit = ord($data{$i});
$part_res = bcmul($digit, $radix);
$result = bcadd($result, $part_res);
$radix = bcmul($radix, $base);
}
return $result;
}
//--
// Convert a number back into binary form
//--
function number_to_binary($number, $blocksize)
{
$base = "256";
$result = "";
$div = $number;
while($div > 0)
{
$mod = bcmod($div, $base);
$div = bcdiv($div, $base);
$result = chr($mod) . $result;
}
return str_pad($result, $blocksize, "\x00", STR_PAD_LEFT);
}
?>
处理的PHP代码:
复制代码 代码如下:
<?php
//Decimal Data
include "rsa.php";
$modulus='124124790696783899579957666732205416556275207289308772677367395397704314099727565633927507139389670490184904760526156031441045563225987129220634807383637837918320623518532877734472159024203477820731033762885040862183213160281165618500092483026873487507336293388981515466164416989192069833140532570993394388051.0000000000';
$private='59940207454900542501281722336097731406274284149290386158861762508911700758780200454438527029729836453810395133453343700246367853044479311924174899432036400630350527132581124575735909908195078492323048176864577497230467497768502277772070557874686662727818507841304646138785432507752788647631021854537869399041.0000000000';
$public="65537";
$keylength="1024";
//php encrypt create
//$encrypted = rsa_encrypt("vzxcvz bdxf", $public, $modulus, $keylength);
//$str= bin2hex($encrypted);//bin data to hex data
$str=$_POST['ciphertext'];
//echo $str."<br>";
$encrypted=convert($str); //hex data to bin data
$decrypted = rsa_decrypt($encrypted, $private, $modulus, $keylength);
echo $decrypted."<br>";
/**
* 16 to 2
* @param unknown_type $hexString
* @return string|unknown
*/
function convert($hexString)
{
$hexLenght = strlen($hexString);
// only hex numbers is allowed
if ($hexLenght % 2 != 0 || preg_match("/[^\da-fA-F]/",$hexString)) return FALSE;
unset($binString);
for ($x = 1; $x <= $hexLenght/2; $x++)
{
$binString .= chr(hexdec(substr($hexString,2 * $x - 2,2)));
}
return $binString;
}
?>
生成PRM文件及生产需要的密钥及公钥的PHP文件:
复制代码 代码如下:
<?php
//create pem file
//run openssl genrsa -out key.pem 1024
//This file is generated variables needed for the operation
list($keylength, $modulus, $public, $private,$modulus_js,$private_js) = read_ssl_key("key.pem");
echo "keylength:(php and js)(private length)<br>";
echo $keylength;
echo "<br>";
echo "modulus:(php)(10)(pubic key)<br>";
echo $modulus;
echo "<br>";
echo "modulus:(js)(16)(pubic key)<br>";
echo $modulus_js;
echo "<br>";
echo "public:(php)(10)(public exponent)<br>";
echo $public;
echo "<br>";
echo "public:(js)(16)(public exponent)<br>";
echo "10001";
echo "<br>";
echo "private:(php)(10)(private key)<br>";
echo $private;
echo "<br>";
echo "private:(js)(16)(private key)<br>";
echo $private_js;
//function
function read_ssl_key($filename)
{
exec("openssl rsa -in $filename -text -noout", $raw);
// read the key length
$keylength = (int) expect($raw[0], "Private-Key: (");
// read the modulus
expect($raw[1], "modulus:");
for($i = 2; $raw[$i][0] == ' '; $i++) $modulusRaw .= trim($raw[$i]);
// read the public exponent
$public = (int) expect($raw[$i], "publicExponent: ");
// read the private exponent
expect($raw[$i + 1], "privateExponent:");
for($i += 2; $raw[$i][0] == ' '; $i++) $privateRaw .= trim($raw[$i]);
// Just to make sure
expect($raw[$i], "prime1:");
// Conversion to decimal format for bcmath
$modulus = bc_hexdec($modulusRaw);
$private = bc_hexdec($privateRaw);
return array($keylength, $modulus['php'], $public, $private['php'],$modulus['js'], $private['js']);
}
/*
* Convert a hexadecimal number of the form "XX:YY:ZZ:..." to decimal
* Uses BCmath, but the standard normal hexdec function for the components
*/
function bc_hexdec($hex)
{
$coefficients = explode(":", $hex);
$result_js= implode("",$coefficients);
$i = 0;
$result = 0;
foreach(array_reverse($coefficients) as $coefficient)
{
$mult = bcpow(256, $i++);
$result = bcadd($result, bcmul(hexdec($coefficient), $mult));
}
return array('php'=>$result,'js'=>$result_js);
}
/*
* If the string has the given prefix, return the remainder.
* If not, die with an error
*/
function expect($str, $prefix)
{
if(substr($str, 0, strlen($prefix)) == $prefix)
return substr($str, strlen($prefix));
else
die("Error: expected $prefix");
}
整套加密及解密的方法都在上面了,本人的测试环境为php5.3+WIN7
上面所有文件下载:RSAFILE
下一篇:PHP 事件机制(2)