网络编程 
首页 > 网络编程 > 浏览文章

大规格文件的上传优化思路详解

(编辑:jimmy 日期: 2024/11/25 浏览:3 次 )

在开发过程中,收到这样一个问题反馈,在网站上传 100 MB 以上的文件经常失败,重试也要等老半天,这就难为需要上传大规格文件的用户了。那么应该怎么做才能快速上传,就算失败了再次发送也能从上次中断的地方继续上传呢?下文为你揭晓答案~

温馨提示:配合 Demo 源码一起阅读效果更佳

整体思路

第一步是结合项目背景,调研比较优化的解决方案。
文件上传失败是老生常谈的问题,常用方案是将一个大文件切片成多个小文件,并行请求接口进行上传,所有请求得到响应后,在服务器端合并所有的分片文件。当分片上传失败,可以在重新上传时进行判断,只上传上次失败的部分,减少用户的等待时间,缓解服务器压力。这就是分片上传文件。

大文件上传

那么如何实现大文件分片上传呢?

流程图如下:

大规格文件的上传优化思路详解

分为以下步骤实现:

1. 文件 MD5 加密

MD5 是文件的唯一标识,可以利用文件的 MD5 查询文件的上传状态。

根据文件的修改时间、文件名称、最后修改时间等信息,通过 spark-md5 生成文件的 MD5。需要注意的是,大规格文件需要分片读取文件,将读取的文件内容添加到 spark-md5 的 hash 计算中,直到文件读取完毕,最后返回最终的 hash 码到 callback 回调函数里面。这里可以根据需要添加文件读取的进度条。

大规格文件的上传优化思路详解

实现方法如下:

// 修改时间+文件名称+最后修改时间-->MD5
md5File (file) {
 return new Promise((resolve, reject) => {
 let blobSlice =
  File.prototype.slice ||
  File.prototype.mozSlice ||
  File.prototype.webkitSlice
 let chunkSize = file.size / 100
 let chunks = 100
 let currentChunk = 0
 let spark = new SparkMD5.ArrayBuffer()
 let fileReader = new FileReader()
 fileReader.onload = function (e) {
  console.log('read chunk nr', currentChunk + 1, 'of', chunks)
  spark.append(e.target.result) // Append array buffer
  currentChunk++
  if (currentChunk < chunks) {
  loadNext()
  } else {
  let cur = +new Date()
  console.log('finished loading')
  // alert(spark.end() + '---' + (cur - pre)); // Compute hash
  let result = spark.end()
  resolve(result)
  }
 }
 fileReader.onerror = function (err) {
  console.warn('oops, something went wrong.')
  reject(err)
 }
 function loadNext () {
  let start = currentChunk * chunkSize
  let end =
  start + chunkSize >= file.size "text-align: center">大规格文件的上传优化思路详解

// 校验文件的MD5
checkFileMD5 (file, fileName, fileMd5Value, onError) {
 const fileSize = file.size
 const { chunkSize, uploadProgress } = this
 this.chunks = Math.ceil(fileSize / chunkSize)
 return new Promise(async (resolve, reject) => {
 const params = {
  fileName: fileName,
  fileMd5Value: fileMd5Value,
 }
 const { ok, data } = await services.checkFile(params)
 if (ok) {
  this.hasUploaded = data.chunkList.length
  uploadProgress(file)
  resolve(data)
 } else {
  reject(ok)
  onError()
 }
 })
}

3. 文件分片

文件上传优化的核心就是文件分片,Blob 对象中的 slice 方法可以对文件进行切割,File 对象是继承 Blob 对象的,因此 File 对象也有 slice 方法。

定义每一个分片文件的大小变量为 chunkSize,通过文件大小 FileSize 和分片大小 chunkSize 得到分片数量 chunks,使用 for 循环和 file.slice() 方法对文件进行分片,序号为 0 - n,和已上传的切片列表做比对,得到所有未上传的分片,push 到请求列表 requestList。

大规格文件的上传优化思路详解

async checkAndUploadChunk (file, fileMd5Value, chunkList) {
 let { chunks, upload } = this
 const requestList = []
 for (let i = 0; i < chunks; i++) {
 let exit = chunkList.indexOf(i + '') > -1
 // 如果已经存在, 则不用再上传当前块
 if (!exit) {
  requestList.push(upload(i, fileMd5Value, file))
 }
 }
 console.log({ requestList })
 const result =
 requestList.length > 0
  "text-align: center">大规格文件的上传优化思路详解

当全部分片上传成功,通知服务端进行合并,当有一个分片上传失败时,提示“上传失败”。在重新上传时,通过文件 MD5 得到文件的上传状态,当服务器已经有该 MD5 对应的切片时,代表该切片已经上传过,无需再次上传,当服务器找不到该 MD5 对应的切片时,代表该切片需要上传,用户只需上传这部分切片,就可以完整上传整个文件,这就是文件的断点续传。

大规格文件的上传优化思路详解

// 上传chunk
upload (i, fileMd5Value, file) {
 const { uploadProgress, chunks } = this
 return new Promise((resolve, reject) => {
 let { chunkSize } = this
 // 构造一个表单,FormData是HTML5新增的
 let end =
  (i + 1) * chunkSize >= file.size "external nofollow" href="https://www.kancloud.cn/yunye/axios/234845">axios 对 ajax 进行封装,可以在 config 中增加 onUploadProgress 方法,监听文件上传进度。

大规格文件的上传优化思路详解

const config = {
 onUploadProgress: progressEvent => {
 var complete = (progressEvent.loaded / progressEvent.total * 100 | 0) + '%'
 }
}
services.uploadChunk(form, config)

6. 合并分片

上传完所有文件分片后,前端主动通知服务端进行合并,服务端接受到这个请求时主动合并切片,通过文件 MD5 在服务器的文件上传路径中找到同名文件夹。从上文可知,文件分片是按照分片序号命名的,而分片上传接口是异步的,无法保证服务器接收到的切片是按照请求顺序拼接。所以应该在合并文件夹里的分片文件前,根据文件名进行排序,然后再通过 concat-files 合并分片文件,得到用户上传的文件。至此大文件上传就完成了。

大规格文件的上传优化思路详解

大规格文件的上传优化思路详解

Node 端代码:

// 合并文件
exports.merge = {
 validate: {
 query: {
  fileName: Joi.string()
  .trim()
  .required()
  .description('文件名称'),
  md5: Joi.string()
  .trim()
  .required()
  .description('文件md5'),
  size: Joi.string()
  .trim()
  .required()
  .description('文件大小'),
 },
 },
 permission: {
 roles: ['user'],
 },
 async handler (ctx) {
 const { fileName, md5, size } = ctx.request.query
 let { name, base: filename, ext } = path.parse(fileName)
 const newFileName = randomFilename(name, ext)
 await mergeFiles(path.join(uploadDir, md5), uploadDir, newFileName, size)
  .then(async () => {
  const file = {
   key: newFileName,
   name: filename,
   mime_type: mime.getType(`${uploadDir}/${newFileName}`),
   ext,
   path: `${uploadDir}/${newFileName}`,
   provider: 'oss',
   size,
   owner: ctx.state.user.id,
  }
  const key = encodeURIComponent(file.key)
   .replace(/%/g, '')
   .slice(-100)
  file.url = await uploadLocalFileToOss(file.path, key)
  file.url = getFileUrl(file)
  const f = await File.create(omit(file, 'path'))
  const files = []
  files.push(f)
  ctx.body = invokeMap(files, 'toJSON')
  })
  .catch(() => {
  throw Boom.badData('大文件分片合并失败,请稍候重试~')
  })
 },
}

总结

本文讲述了大规格文件上传优化的一些做法,总结为以下 4 点:

  • ob.slice 将文件切片,并发上传多个切片,所有切片上传后告知服务器合并,实现大文件分片上传;
  • 原生 XMLHttpRequest 的 onprogress 对切片上传进度的监听,实时获取文件上传进度;
  • spark-md5 根据文件内容算出文件 MD5,得到文件唯一标识,与文件上传状态绑定;
  • 分片上传前通过文件 MD5 查询已上传切片列表,上传时只上传未上传过的切片,实现断点续传。

参照 Demo 源码 可快速上手上述功能

上一篇:Win10下为VSCode配置LaTex编辑器的方法
下一篇:IntelliJ IDEA 性能优化的教程详解