网络编程 
首页 > 网络编程 > 浏览文章

矩形相交以及求出相交的区域的原理解析

(编辑:jimmy 日期: 2024/12/26 浏览:3 次 )
(1)设计一个算法,确定两个矩形是否相交(即有重叠区域)
(2)如果两个矩形相交,设计一个算法,求出相交的区域矩形

(1) 对于这个问题,一般的思路就是判断一个矩形的四个顶点是否在另一个矩形的区域内。这个思路最简单,但是效率不高,并且存在错误,错误在哪里,下面分析一 下。
矩形相交以及求出相交的区域的原理解析
如上图,把矩形的相交(区域重叠)分成三种(可能也有其他划分),对于第三种情况,如图中的(3),两个矩形相交,但并不存在一个矩形的顶点在另一个矩形 内部。所以那种思路存在一个错误,对于这种情况的相交则检查不出。

仔细观察上图,想到另一种思路,那就是判断两个矩形的中心坐标的水平和垂直距离,只要这两个值满足某种条件就可以相交。
矩形A的宽 Wa = Xa2-Xa1 高 Ha = Ya2-Ya1
矩形B的宽 Wb = Xb2-Xb1 高 Hb = Yb2-Yb1
矩形A的中心坐标 (Xa3,Ya3) = ( (Xa2+Xa1)/2 ,(Ya2+Ya1)/2 )
矩形B的中心坐标 (Xb3,Yb3) = ( (Xb2+Xb1)/2 ,(Yb2+Yb1)/2 )
所以只要同时满足下面两个式子,就可以说明两个矩形相交。1) | Xb3-Xa3 | <= Wa/2 + Wb/2
2) | Yb3-Ya3 | <= Ha/2 + Hb/2
即:
| Xb2+Xb1-Xa2-Xa1 | <= Xa2-Xa1 + Xb2-Xb1
| Yb2+Yb1-Ya2-Ya1 | <=Y a2-Ya1 + Yb2-Yb1

(2) 对于这个问题,假设两个矩形相交,设相交之后的矩形为C,且矩形C的左上角坐标为(Xc1,Yc1),右下角坐标为(Xc2,Yc2),经过观察上图,很 显然可以得到:
Xc1 = max(Xa1,Xb1)
Yc1 = max(Ya1,Yb1)
Xc2 = min(Xa2,Xb2)
Yc2 = min(Ya2,Yb2)
这样就求出了矩形的相交区域。
另外,注意到在不假设矩形相交的前提下,定义(Xc1,Yc1),(Xc2,Yc2),且Xc1,Yc1,Xc2,Yc2的值由上面四个式子得出。这样, 可以依据Xc1,Yc1,Xc2,Yc2的值来判断矩形相交。
Xc1,Yc1,Xc2,Yc2只要同时满足下面两个式子,就可以说明两个矩形相交。
3) Xc1 <= Xc2
4) Yc1 <= Yc2
即:
max(Xa1,Xb1) <= min(Xa2,Xb2)
max(Ya1,Yb1) <= min(Ya2,Yb2)
上一篇:HTTP状态代码集合 方便查询
下一篇:asp.net php asp jsp 301重定向的代码(集合)
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap