如何用python爬取微博热搜数据并保存
(编辑:jimmy 日期: 2025/1/9 浏览:3 次 )
主要用到requests和bf4两个库
将获得的信息保存在d://hotsearch.txt下
import requests; import bs4 mylist=[] r = requests.get(url='https://s.weibo.com/top/summary"html.parser") for link in soup.find('tbody') : hotnumber='' if isinstance(link,bs4.element.Tag): # print(link('td')) lis=link('td') hotrank=lis[1]('a')[0].string#热搜排名 hotname=lis[1].find('span')#热搜名称 if isinstance(hotname,bs4.element.Tag): hotnumber=hotname.string#热搜指数 pass mylist.append([lis[0].string,hotrank,hotnumber,lis[2].string]) f=open("d://hotsearch.txt","w+") for line in mylist: f.write('%s %s %s %s\n'%(line[0],line[1],line[2],line[3]))
知识点扩展:利用python爬取微博热搜并进行数据分析
爬取微博热搜
import schedule import pandas as pd from datetime import datetime import requests from bs4 import BeautifulSoup url = "https://s.weibo.com/top/summary" get_info_dict = {} count = 0 def main(): global url, get_info_dict, count get_info_list = [] print("正在爬取数据~~~") html = requests.get(url).text soup = BeautifulSoup(html, 'lxml') for tr in soup.find_all(name='tr', class_=''): get_info = get_info_dict.copy() get_info['title'] = tr.find(class_='td-02').find(name='a').text try: get_info['num'] = eval(tr.find(class_='td-02').find(name='span').text) except AttributeError: get_info['num'] = None get_info['time'] = datetime.now().strftime("%Y/%m/%d %H:%M") get_info_list.append(get_info) get_info_list = get_info_list[1:16] df = pd.DataFrame(get_info_list) if count == 0: df.to_csv('datas.csv', mode='a+', index=False, encoding='gbk') count += 1 else: df.to_csv('datas.csv', mode='a+', index=False, header=False, encoding='gbk') # 定时爬虫 schedule.every(1).minutes.do(main) while True: schedule.run_pending()
pyecharts数据分析
import pandas as pd from pyecharts import options as opts from pyecharts.charts import Bar, Timeline, Grid from pyecharts.globals import ThemeType, CurrentConfig df = pd.read_csv('datas.csv', encoding='gbk') print(df) t = Timeline(init_opts=opts.InitOpts(theme=ThemeType.MACARONS)) # 定制主题 for i in range(int(df.shape[0]/15)): bar = ( Bar() .add_xaxis(list(df['title'][i*15: i*15+15][::-1])) # x轴数据 .add_yaxis('num', list(df['num'][i*15: i*15+15][::-1])) # y轴数据 .reversal_axis() # 翻转 .set_global_opts( # 全局配置项 title_opts=opts.TitleOpts( # 标题配置项 title=f"{list(df['time'])[i * 15]}", pos_right="5%", pos_bottom="15%", title_textstyle_opts=opts.TextStyleOpts( font_family='KaiTi', font_size=24, color='#FF1493' ) ), xaxis_opts=opts.AxisOpts( # x轴配置项 splitline_opts=opts.SplitLineOpts(is_show=True), ), yaxis_opts=opts.AxisOpts( # y轴配置项 splitline_opts=opts.SplitLineOpts(is_show=True), axislabel_opts=opts.LabelOpts(color='#DC143C') ) ) .set_series_opts( # 系列配置项 label_opts=opts.LabelOpts( # 标签配置 position="right", color='#9400D3') ) ) grid = ( Grid() .add(bar, grid_opts=opts.GridOpts(pos_left="24%")) ) t.add(grid, "") t.add_schema( play_interval=1000, # 轮播速度 is_timeline_show=False, # 是否显示 timeline 组件 is_auto_play=True, # 是否自动播放 ) t.render('时间轮播图.html')
下一篇:利用Python如何画一颗心、小人发射爱心