脚本专栏 
首页 > 脚本专栏 > 浏览文章

numba提升python运行速度的实例方法

(编辑:jimmy 日期: 2024/11/2 浏览:3 次 )

大家都知道Python运行速度很慢,但是轮子多,因此用户十分广泛,在各种领域上都能用到Python,但是最头疼的还是,解决运行速度问题,因此这里给大家介绍的是numba,是基本是等于再造语言。但是支持的numpy函数并不多。要让能jit的函数多起来才行。下面就详细介绍使用numba提升python运行速度方法。

numba简介:

能够实现将python函数编译为机器代码,提高运行速度。

工作作用:

给python换一种编译器

使用numba:

1、导入numba及其编译器

import numpy as np
import numba 
from numba import jit

2、传入numba装饰器jit,编写函数

@jit(nopython=True) 
def go_fast(a): 
  trace = 0
   for i in range(a.shape[0]): 
    trace += np.tanh(a[i, i]) 
return a + trace

3、函数传入实参

x = np.arange(100).reshape(10, 10) 
go_fast(x)

4、加速的函数执行时间

% timeit go_fast(x)

知识点扩展:

numba适合科学计算

numpy是为面向numpy数组的计算任务而设计的。

在面向数组的计算任务中,数据并行性对于像GPU这样的加速器是很自然的。Numba了解NumPy数组类型,并使用它们生成高效的编译代码,用于在GPU或多核CPU上执行。特殊装饰器还可以创建函数,像numpy函数那样在numpy数组上广播。

什么情况下使用numba呢?

  • 使用numpy数组做大量科学计算时
  • 使用for循环时
上一篇:使用python对excel表格处理的一些小功能
下一篇:全网最详细的PyCharm+Anaconda的安装过程图解
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap