脚本专栏 
首页 > 脚本专栏 > 浏览文章

基于python爬取链家二手房信息代码示例

(编辑:jimmy 日期: 2025/1/11 浏览:3 次 )

基本环境配置

  • python 3.6
  • pycharm
  • requests
  • parsel
  • time

相关模块pip安装即可

确定目标网页数据

基于python爬取链家二手房信息代码示例

哦豁,这个价格..................看到都觉得脑阔疼

通过开发者工具,可以直接找到网页返回的数据~

基于python爬取链家二手房信息代码示例
基于python爬取链家二手房信息代码示例

每一个二手房的数据,都在网页的 li 标签里面,咱们可以获取网页返回的数据,然后通过解析,就可以获取到自己想要的数据了~

获取网页数据

import requests
headers = {
  'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36'
}
response = requests.get(url=url, headers=headers)

解析网页数据

import parsel
selector = parsel.Selector(response.text)
lis = selector.css('.sellListContent li')
dit = {}
for li in lis:
  title = li.css('.title a::text').get()
  dit['标题'] = title
  positionInfo = li.css('.positionInfo a::text').getall()
  info = '-'.join(positionInfo)
  dit['开发商'] = info
  houseInfo = li.css('.houseInfo::text').get()
  dit['房子信息'] = houseInfo
  followInfo = li.css('.followInfo::text').get()
  dit['发布周期'] = followInfo
  Price = li.css('.totalPrice span::text').get()
  dit['售价/万'] = Price
  unitPrice = li.css('.unitPrice span::text').get()
  dit['单价'] = unitPrice
  csv_writer.writerow(dit)
  print(dit)

基于python爬取链家二手房信息代码示例

保存数据

import csv
f = open('二手房信息.csv', mode='a', encoding='utf-8-sig', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['标题', '开发商', '房子信息', '发布周期', '售价/万', '单价'])
csv_writer.writeheader()
csv_writer.writerow(dit)
f.close()

基于python爬取链家二手房信息代码示例

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:利用Python实现字幕挂载(把字幕文件与视频合并)思路详解
下一篇:Python测试框架:pytest学习笔记
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap