脚本专栏 
首页 > 脚本专栏 > 浏览文章

python opencv pytesseract 验证码识别的实现

(编辑:jimmy 日期: 2025/10/14 浏览:3 次 )

一、环境配置

需要 pillow 和 pytesseract 这两个库,pip install 安装就好了。

install pillow -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
pip install pytesseract -i http://pypi.douban.com/simple --trusted-host pypi.douban.com

安装好Tesseract-OCR.exe

pytesseract 库的配置:搜索找到pytesseract.py,打开该.py文件,找到 tesseract_cmd,改变它的值为刚才安装 tesseract.exe 的路径。

python opencv pytesseract 验证码识别的实现

二、验证码识别

识别验证码,需要先对图像进行预处理,去除会影响识别准确度的线条或噪点,提高识别准确度。

实例1

import cv2 as cv
import pytesseract
from PIL import Image


def recognize_text(image):
  # 边缘保留滤波 去噪
  dst = cv.pyrMeanShiftFiltering(image, sp=10, sr=150)
  # 灰度图像
  gray = cv.cvtColor(dst, cv.COLOR_BGR2GRAY)
  # 二值化
  ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
  # 形态学操作  腐蚀 膨胀
  erode = cv.erode(binary, None, iterations=2)
  dilate = cv.dilate(erode, None, iterations=1)
  cv.imshow('dilate', dilate)
  # 逻辑运算 让背景为白色 字体为黑 便于识别
  cv.bitwise_not(dilate, dilate)
  cv.imshow('binary-image', dilate)
  # 识别
  test_message = Image.fromarray(dilate)
  text = pytesseract.image_to_string(test_message)
  print(f'识别结果:{text}')


src = cv.imread(r'./test/044.png')
cv.imshow('input image', src)
recognize_text(src)
cv.waitKey(0)
cv.destroyAllWindows()

运行效果如下:

识别结果:3n3D

Process finished with exit code 0

python opencv pytesseract 验证码识别的实现

实例2

import cv2 as cv
import pytesseract
from PIL import Image


def recognize_text(image):
  # 边缘保留滤波 去噪
  blur =cv.pyrMeanShiftFiltering(image, sp=8, sr=60)
  cv.imshow('dst', blur)
  # 灰度图像
  gray = cv.cvtColor(blur, cv.COLOR_BGR2GRAY)
  # 二值化
  ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
  print(f'二值化自适应阈值:{ret}')
  cv.imshow('binary', binary)
  # 形态学操作 获取结构元素 开操作
  kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 2))
  bin1 = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel)
  cv.imshow('bin1', bin1)
  kernel = cv.getStructuringElement(cv.MORPH_OPEN, (2, 3))
  bin2 = cv.morphologyEx(bin1, cv.MORPH_OPEN, kernel)
  cv.imshow('bin2', bin2)
  # 逻辑运算 让背景为白色 字体为黑 便于识别
  cv.bitwise_not(bin2, bin2)
  cv.imshow('binary-image', bin2)
  # 识别
  test_message = Image.fromarray(bin2)
  text = pytesseract.image_to_string(test_message)
  print(f'识别结果:{text}')


src = cv.imread(r'./test/045.png')
cv.imshow('input image', src)
recognize_text(src)
cv.waitKey(0)
cv.destroyAllWindows()

运行效果如下:

二值化自适应阈值:181.0
识别结果:8A62N1

Process finished with exit code 0

python opencv pytesseract 验证码识别的实现

实例3

import cv2 as cv
import pytesseract
from PIL import Image


def recognize_text(image):
  # 边缘保留滤波 去噪
  blur = cv.pyrMeanShiftFiltering(image, sp=8, sr=60)
  cv.imshow('dst', blur)
  # 灰度图像
  gray = cv.cvtColor(blur, cv.COLOR_BGR2GRAY)
  # 二值化 设置阈值 自适应阈值的话 黄色的4会提取不出来
  ret, binary = cv.threshold(gray, 185, 255, cv.THRESH_BINARY_INV)
  print(f'二值化设置的阈值:{ret}')
  cv.imshow('binary', binary)
  # 逻辑运算 让背景为白色 字体为黑 便于识别
  cv.bitwise_not(binary, binary)
  cv.imshow('bg_image', binary)
  # 识别
  test_message = Image.fromarray(binary)
  text = pytesseract.image_to_string(test_message)
  print(f'识别结果:{text}')


src = cv.imread(r'./test/045.jpg')
cv.imshow('input image', src)
recognize_text(src)
cv.waitKey(0)
cv.destroyAllWindows()

运行效果如下:

二值化设置的阈值:185.0
识别结果:7364

Process finished with exit code 0

python opencv pytesseract 验证码识别的实现

上一篇:Python自动登录QQ的实现示例
下一篇:简单的命令查看安装的python版本号
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap