脚本专栏 
首页 > 脚本专栏 > 浏览文章

keras实现theano和tensorflow训练的模型相互转换

(编辑:jimmy 日期: 2025/10/16 浏览:3 次 )

我就废话不多说了,大家还是直接看代码吧~

</pre><pre code_snippet_id="1947416" snippet_file_name="blog_20161025_1_3331239" name="code" class="python">

# coding:utf-8
"""
If you want to load pre-trained weights that include convolutions (layers Convolution2D or Convolution1D),
be mindful of this: Theano and TensorFlow implement convolution in different ways (TensorFlow actually implements correlation, much like Caffe),
and thus, convolution kernels trained with Theano (resp. TensorFlow) need to be converted before being with TensorFlow (resp. Theano).
"""
from keras import backend as K
from keras.utils.np_utils import convert_kernel
from text_classifier import keras_text_classifier
import sys
 
def th2tf( model):
  import tensorflow as tf
  ops = []
  for layer in model.layers:
    if layer.__class__.__name__ in ['Convolution1D', 'Convolution2D']:
      original_w = K.get_value(layer.W)
      converted_w = convert_kernel(original_w)
      ops.append(tf.assign(layer.W, converted_w).op)
  K.get_session().run(ops)
  return model
 
def tf2th(model):
  for layer in model.layers:
    if layer.__class__.__name__ in ['Convolution1D', 'Convolution2D']:
      original_w = K.get_value(layer.W)
      converted_w = convert_kernel(original_w)
      K.set_value(layer.W, converted_w)
  return model
 
def conv_layer_converted(tf_weights, th_weights, m = 0):
  """
  :param tf_weights:
  :param th_weights:
  :param m: 0-tf2th, 1-th2tf
  :return:
  """
  if m == 0: # tf2th
    tc = keras_text_classifier(weights_path=tf_weights)
    model = tc.loadmodel()
    model = tf2th(model)
    model.save_weights(th_weights)
  elif m == 1: # th2tf
    tc = keras_text_classifier(weights_path=th_weights)
    model = tc.loadmodel()
    model = th2tf(model)
    model.save_weights(tf_weights)
  else:
    print("0-tf2th, 1-th2tf")
    return
if __name__ == '__main__':
  if len(sys.argv) < 4:
    print("python tf_weights th_weights <0|1>\n0-tensorflow to theano\n1-theano to tensorflow")
    sys.exit(0)
  tf_weights = sys.argv[1]
  th_weights = sys.argv[2]
  m = int(sys.argv[3])
  conv_layer_converted(tf_weights, th_weights, m)

补充知识:keras学习之修改底层为TensorFlow还是theano

我们知道,keras的底层是TensorFlow或者theano

要知道我们是用的哪个为底层,只需要import keras即可显示

修改方法:

打开

keras实现theano和tensorflow训练的模型相互转换

修改

keras实现theano和tensorflow训练的模型相互转换

以上这篇keras实现theano和tensorflow训练的模型相互转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:python中round函数如何使用
下一篇:Keras 切换后端方式(Theano和TensorFlow)
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap