脚本专栏 
首页 > 脚本专栏 > 浏览文章

pytorch方法测试——激活函数(ReLU)详解

(编辑:jimmy 日期: 2025/9/21 浏览:3 次 )

测试代码:

import torch
import torch.nn as nn

#inplace为True,将会改变输入的数据 ,否则不会改变原输入,只会产生新的输出
m = nn.ReLU(inplace=True)
input = torch.randn(7)

print("输入处理前图片:")
print(input)

output = m(input)

print("ReLU输出:")
print(output)
print("输出的尺度:")
print(output.size())

print("输入处理后图片:")
print(input)

输出为:

输入处理前图片:

tensor([ 1.4940, 1.0278, -1.9883, -0.1871, 0.4612, 0.0297, 2.4300])

ReLU输出:

tensor([ 1.4940, 1.0278, 0.0000, 0.0000, 0.4612, 0.0297, 2.4300])

输出的尺度:

torch.Size([7])

输入处理后图片:

tensor([ 1.4940, 1.0278, 0.0000, 0.0000, 0.4612, 0.0297, 2.4300])

结论:

nn.ReLU(inplace=True)

inplace为True,将会改变输入的数据 ,否则不会改变原输入,只会产生新的输出

以上这篇pytorch方法测试——激活函数(ReLU)详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:PyTorch的SoftMax交叉熵损失和梯度用法
下一篇:Python基于Tensor FLow的图像处理操作详解
一句话新闻
Windows上运行安卓你用过了吗
在去年的5月23日,借助Intel Bridge Technology以及Intel Celadon两项技术的驱动,Intel为PC用户带来了Android On Windows(AOW)平台,并携手国内软件公司腾讯共同推出了腾讯应用宝电脑版,将Windows与安卓两大生态进行了融合,PC的使用体验随即被带入到了一个全新的阶段。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap