脚本专栏 
首页 > 脚本专栏 > 浏览文章

关于Pytorch的MLP模块实现方式

(编辑:jimmy 日期: 2025/9/21 浏览:3 次 )

MLP分类效果一般好于线性分类器,即将特征输入MLP中再经过softmax来进行分类。

具体实现为将原先线性分类模块:

self.classifier = nn.Linear(config.hidden_size, num_labels)

替换为:

self.classifier = MLP(config.hidden_size, num_labels)

并且添加MLP模块:

  class MLP(nn.Module):
    def __init__(self, input_size, common_size):
      super(MLP, self).__init__()
      self.linear = nn.Sequential(
        nn.Linear(input_size, input_size // 2),
        nn.ReLU(inplace=True),
        nn.Linear(input_size // 2, input_size // 4),
        nn.ReLU(inplace=True),
        nn.Linear(input_size // 4, common_size)
      )
 
    def forward(self, x):
      out = self.linear(x)
      return out

看一下模块结构:

mlp = MLP(1000,3)
print(mlp)

关于Pytorch的MLP模块实现方式

以上这篇关于Pytorch的MLP模块实现方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Python PyInstaller安装和使用教程详解
下一篇:PyTorch 普通卷积和空洞卷积实例
一句话新闻
Windows上运行安卓你用过了吗
在去年的5月23日,借助Intel Bridge Technology以及Intel Celadon两项技术的驱动,Intel为PC用户带来了Android On Windows(AOW)平台,并携手国内软件公司腾讯共同推出了腾讯应用宝电脑版,将Windows与安卓两大生态进行了融合,PC的使用体验随即被带入到了一个全新的阶段。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap