脚本专栏 
首页 > 脚本专栏 > 浏览文章

pd.DataFrame统计各列数值多少的实例

(编辑:jimmy 日期: 2025/5/6 浏览:3 次 )

如下所示:

.count()   #非空元素计算
.min() a   #最小值
.max()   #最大值
.idxmin()   #最小值的位置,类似于R中的which.min函数
.idxmax()   #最大值的位置,类似于R中的which.max函数
.quantile(0.75) #75%分位数
.sum()   #求和
.mean()   #均值
.median()   #中位数
.mode()   #众数
.var()   #方差
.std()   #标准差
.mad()   #平均绝对偏差
.skew()   #偏度
.kurt()   #峰度
.describe()  #一次性输出多个描述性统计指标

如果你想统计各个列大于0的元素个数:

data[data>0].count()

会出现各个属性(列)大于零的个数

data[data['A']>0].count()

列A大于0的个数

这里说明,data的数据格式必须是DataFrame

pd.Series().value_counts(),会统计各个类的统计值。

我们在用这些函数时,会迷茫,不知道什么时候value_counts(),什么时候count()

这和前面的数据形式是有关的,只要前面是Series数据,要用value_counts(),前面数据形式是DataFrame要用count()

以上这篇pd.DataFrame统计各列数值多少的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Python绘图实现显示中文
下一篇:Python图片的横坐标汉字实例
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap