脚本专栏 
首页 > 脚本专栏 > 浏览文章

Pandas之Dropna滤除缺失数据的实现方法

(编辑:jimmy 日期: 2025/9/23 浏览:3 次 )

约定:

import pandas as pd
import numpy as np
from numpy import nan as NaN

滤除缺失数据

pandas的设计目标之一就是使得处理缺失数据的任务更加轻松些。pandas使用NaN作为缺失数据的标记。

使用dropna使得滤除缺失数据更加得心应手。

一、处理Series对象

通过**dropna()**滤除缺失数据:

se1=pd.Series([4,NaN,8,NaN,5])
print(se1)
se1.dropna()

代码结果:

0    4.0
1    NaN
2    8.0
3    NaN
4    5.0
dtype: float64

0    4.0
2    8.0
4    5.0
dtype: float64

通过布尔序列也能滤除:

se1[se1.notnull()]

代码结果:

0    4.0
2    8.0
4    5.0
dtype: float64

二、处理DataFrame对象

处理DataFrame对象比较复杂,因为你可能需要丢弃所有的NaN或部分NaN。

df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

0 1 2 0 1.0 2.0 3.0 1 NaN NaN 2.0 2 NaN NaN NaN 3 8.0 8.0 NaN

默认滤除所有包含NaN:

df1.dropna()

代码结果:

0 1 2 0 1.0 2.0 3.0

传入**how=‘all'**滤除全为NaN的行:

df1.dropna(how='all')

代码结果:

0 1 2 0 1.0 2.0 3.0 1 NaN NaN 2.0 3 8.0 8.0 NaN

传入axis=1滤除列:

df1[3]=NaN
df1

代码结果:

0 1 2 3 0 1.0 2.0 3.0 NaN 1 NaN NaN 2.0 NaN 2 NaN NaN NaN NaN 3 8.0 8.0 NaN NaN

df1.dropna(axis=1,how="all")

代码结果:

传入thresh=n保留至少有n个非NaN数据的行:

df1.dropna(thresh=1)

df1.dropna(thresh=3)

代码结果:

0 1 2 0 1.0 2.0 3.0 1 NaN NaN 2.0 2 NaN NaN NaN 3 8.0 8.0 NaN

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:PYQT5实现控制台显示功能的方法
下一篇:PyQT5 QTableView显示绑定数据的实例详解
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap