脚本专栏 
首页 > 脚本专栏 > 浏览文章

Pandas之MultiIndex对象的示例详解

(编辑:jimmy 日期: 2025/9/23 浏览:3 次 )

约定

import pandas as pd
from pandas import DataFrame
import numpy as np

MultiIndex

MultiIndex表示多级索引,它是从Index继承过来的,其中多级标签用元组对象来表示。

一、创建MultiIndex对象

创建方式一:元组列表

m_index1=pd.Index([("A","x1"),("A","x2"),("B","y1"),("B","y2"),("B","y3")],name=["class1","class2"])
m_index1

代码结果:

MultiIndex(levels=[['A', 'B'], ['x1', 'x2', 'y1', 'y2', 'y3']],
      labels=[[0, 0, 1, 1, 1], [0, 1, 2, 3, 4]],
      names=['class1', 'class2'])
df1=DataFrame(np.random.randint(1,10,(5,3)),index=m_index1)
df1

代码结果:

0 1 2 class1 class2 A x1 7 4 8 x2 4 5 2 B y1 6 9 7 y2 2 1 6 y3 6 8 6

创建方式二:特定结构

例如**from_arrays()

class1=["A","A","B","B"]
class2=["x1","x2","y1","y2"]
m_index2=pd.MultiIndex.from_arrays([class1,class2],names=["class1","class2"])
m_index2

代码结果:

MultiIndex(levels=[['A', 'B'], ['x1', 'x2', 'y1', 'y2']],
      labels=[[0, 0, 1, 1], [0, 1, 2, 3]],
      names=['class1', 'class2'])
df2=DataFrame(np.random.randint(1,10,(4,3)),index=m_index2)
df2

代码结果:

0 1 2 class1 class2 A x1 2 4 5 x2 3 5 9 B y1 7 1 2 y2 3 1 8

创建方式三:笛卡尔积

from_product()从多个集合的笛卡尔积创建MultiIndex对象。

m_index3=pd.MultiIndex.from_product([["A","B"],['x1','y1']],names=["class1","class2"])
m_index3


代码结果:

MultiIndex(levels=[['A', 'B'], ['x1', 'y1']],
      labels=[[0, 0, 1, 1], [0, 1, 0, 1]],
      names=['class1', 'class2'])
df3=DataFrame(np.random.randint(1,10,(2,4)),columns=m_index3)
df3

代码结果:

class1 A B class2 x1 y1 x1 y1 0 2 9 1 8 1 5 2 5 2

二、MultiIndex对象属性

df1

代码结果:

0 1 2 class1 class2 A x1 7 4 8 x2 4 5 2 B y1 6 9 7 y2 2 1 6 y3 6 8 6

m_index4=df1.index
print(in1[0])

代码结果:

('A', 'x1')

调用.get_loc()和.get_indexer()获取标签的下标:

print(m_index4.get_loc(("A","x2")))
print(m_index4.get_indexer([("A","x2"),("B","y1"),"nothing"]))

代码结果:

1
[ 1  2 -1]

MultiIndex对象使用多个Index对象保存索引中每一级的标签:

print(m_index4.levels[0])
print(m_index4.levels[1])

代码结果:

Index(['A', 'B'], dtype='object', name='class1')
Index(['x1', 'x2', 'y1', 'y2', 'y3'], dtype='object', name='class2')

MultiIndex对象还有属性labels保存标签的下标:

print(m_index4.labels[0])
print(m_index4.labels[1])

代码结果:

FrozenNDArray([0, 0, 1, 1, 1], dtype='int8')
FrozenNDArray([0, 1, 2, 3, 4], dtype='int8')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:pyQt5实时刷新界面的示例
下一篇:Python+threading模块对单个接口进行并发测试
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap