脚本专栏 
首页 > 脚本专栏 > 浏览文章

Pandas统计重复的列里面的值方法

(编辑:jimmy 日期: 2025/12/30 浏览:3 次 )

pandas

代码如下:

import pandas as pd
import numpy as np

salaries = pd.DataFrame({
 'name': ['BOSS', 'Lilei', 'Lilei', 'Han', 'BOSS', 'BOSS', 'Han', 'BOSS'],
 'Year': [2016, 2016, 2016, 2016, 2017, 2017, 2017, 2017],
 'Salary': [1, 2, 3, 4, 5, 6, 7, 8],
 'Bonus': [2, 2, 2, 2, 3, 4, 5, 6]
})
print(salaries)
print(salaries['Bonus'].duplicated(keep='first'))
print(salaries[salaries['Bonus'].duplicated(keep='first')].index)
print(salaries[salaries['Bonus'].duplicated(keep='first')])
print(salaries['Bonus'].duplicated(keep='last'))
print(salaries[salaries['Bonus'].duplicated(keep='last')].index)
print(salaries[salaries['Bonus'].duplicated(keep='last')])

输出如下:

 Bonus Salary Year name
0  2  1 2016 BOSS
1  2  2 2016 Lilei
2  2  3 2016 Lilei
3  2  4 2016 Han
4  3  5 2017 BOSS
5  4  6 2017 BOSS
6  5  7 2017 Han
7  6  8 2017 BOSS
0 False
1  True
2  True
3  True
4 False
5 False
6 False
7 False
Name: Bonus, dtype: bool
Int64Index([1, 2, 3], dtype='int64')
 Bonus Salary Year name
1  2  2 2016 Lilei
2  2  3 2016 Lilei
3  2  4 2016 Han
0  True
1  True
2  True
3 False
4 False
5 False
6 False
7 False
Name: Bonus, dtype: bool
Int64Index([0, 1, 2], dtype='int64')
 Bonus Salary Year name
0  2  1 2016 BOSS
1  2  2 2016 Lilei
2  2  3 2016 Lilei

非pandas

对于如nunpy中的这些操作主要如下:

假设有数组

a = np.array([1, 2, 1, 3, 3, 3, 0])

想找出 [1 3]

则有

方法1

m = np.zeros_like(a, dtype=bool)
m[np.unique(a, return_index=True)[1]] = True
a[~m]
方法2

a[~np.in1d(np.arange(len(a)), np.unique(a, return_index=True)[1], assume_unique=True)]
方法3

np.setxor1d(a, np.unique(a), assume_unique=True)
方法4

u, i = np.unique(a, return_inverse=True)
u[np.bincount(i) > 1]
方法5

s = np.sort(a, axis=None)
s[:-1][s[1:] == s[:-1]]

参考:https://stackoverflow.com/questions/11528078/determining-duplicate-values-in-an-array

以上这篇Pandas统计重复的列里面的值方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:对python实现模板生成脚本的方法详解
下一篇:自学python的建议和周期预算
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap