脚本专栏 
首页 > 脚本专栏 > 浏览文章

基于Python实现迪杰斯特拉和弗洛伊德算法

(编辑:jimmy 日期: 2025/5/13 浏览:3 次 )

图搜索之基于Python的迪杰斯特拉算法和弗洛伊德算法,供大家参考,具体内容如下

Djstela算法

#encoding=UTF-8
MAX=9
'''
Created on 2016年9月28日
@author: sx
'''
b=999
G=[[0,1,5,b,b,b,b,b,b], [1,0,3,7,5,b,b,b,b], [5,3,0,b,1,7,b,b,b], [b,7,b,0,2,b,3,b,b], [b,5,1,2,0,3,6,9,b], [b,b,7,b,3,0,b,5,b], [b,b,b,3,6,b,0,2,7], [b,b,b,b,9,5,2,0,4], [b,b,b,b,b,b,7,4,0]]
P=[]
D=[]
def Djstela(G,P,D):
 final=[]
 for i in range(0,len(G)):
 final.append(0)
 D.append(G[0][i])
 P.append(0)
 D[0]=0
 final[0]=1
 k=0
 for v in range(1,len(G)):
 min=999
 for w in range(0,len(G)):
  if final[w]==0 and D[w]<min:
  k=w
  min=D[w]
 final[k]=1 
 for t in range(0,len(G)):
  if min+G[k][t]<D[t]:
  D[t]=min+G[k][t]
  P[t]=k
 print("\n最短路径\n",D,"\n","\n前一个选择\n",P)
def search(x):
 print("选择的终点",x,"最短路径",D[x]) 
print("邻接矩阵\n")
for i in range(0,9):
 print(G[i])
Djstela(G, P, D)
q=input("\n请输入终点")
search(int(q))

FLOYD算法

#encoding=UTF-8
'''
Created on 2016年9月28日
@author: sx
'''
t=0
b=999
G=[[0,1,5,b,b,b,b,b,b], [1,0,3,7,5,b,b,b,b], [5,3,0,b,1,7,b,b,b], [b,7,b,0,2,b,3,b,b], [b,5,1,2,0,3,6,9,b], [b,b,7,b,3,0,b,5,b], [b,b,b,3,6,b,0,2,7], [b,b,b,b,9,5,2,0,4], [b,b,b,b,b,b,7,4,0]]
P=[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]]
D=[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]]
def Floyd(G,P,D):
 t=0
 for u in range(0,len(G)):
 for s in range(0,len(G)):
  D[u][s]=G[u][s]  
  P[u][s]=s
 for k in range(0,len(G)):
 for v in range(0,len(G)):
  for w in range(0,len(G)):
  if D[v][w]>D[v][k]+D[k][w]:
   t=t+1
   D[v][w]=D[v][k]+D[k][w]
   P[v][w]=P[v][k]  
Floyd(G, P, D)
def search(s,u):
 lenth=D[s][u]
 print("路径长度为",lenth)
 f=P[s][u]
 foot=[s,f]
 if f==u:
 print("无需规划,0步")
 while f!=u:
 f=P[f][u] 
 foot.append(f) 
 for i in range(0,len(foot)):
 if i==0:
  print("起 点____",foot[i])
 elif i==len(foot)-1:
  print("终 点____",foot[i],"步长___",G[foot[i-1]][foot[i]])
 else:
  print("第",i,"点____",foot[i],"步长___",G[foot[i-1]][foot[i]])
print("邻接矩阵")
for i in range(0,9):
 print(G[i])
s=input("请输入起点0-8\n")
u=input("请输入终点0-8\n")
Floyd(G, P, D)
search(int(s),int(u))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:Python设计模式之原型模式实例详解
下一篇:Python中logging实例讲解
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap