脚本专栏 
首页 > 脚本专栏 > 浏览文章

对python指数、幂数拟合curve_fit详解

(编辑:jimmy 日期: 2025/9/18 浏览:3 次 )

1、一次二次多项式拟合

一次二次比较简单,直接使用numpy中的函数即可,polyfit(x, y, degree)。

2、指数幂数拟合curve_fit

使用scipy.optimize 中的curve_fit,幂数拟合例子如下:

from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
import numpy as np
 
def func(x, a, b, c):
 return a * np.exp(-b * x) + c
 
xdata = np.linspace(0, 4, 50)
y = func(xdata, 2.5, 1.3, 0.5)
ydata = y + 0.2 * np.random.normal(size=len(xdata))
plt.plot(xdata,ydata,'b-')
popt, pcov = curve_fit(func, xdata, ydata)
#popt数组中,三个值分别是待求参数a,b,c
y2 = [func(i, popt[0],popt[1],popt[2]) for i in xdata]
plt.plot(xdata,y2,'r--')
print popt

下面是原始数据和拟合曲线:

对python指数、幂数拟合curve_fit详解

下面是指数拟合例子:

def fund(x, a, b):
 return x**a + b
 
xdata = np.linspace(0, 4, 50)
y = fund(xdata, 2.5, 1.3)
ydata = y + 4 * np.random.normal(size=len(xdata))
plt.plot(xdata,ydata,'b-')
popt, pcov = curve_fit(fund, xdata, ydata)
#popt数组中,三个值分别是待求参数a,b,c
y2 = [fund(i, popt[0],popt[1]) for i in xdata]
plt.plot(xdata,y2,'r--')
print popt

下图是原始数据和拟合曲线:

对python指数、幂数拟合curve_fit详解

以上这篇对python指数、幂数拟合curve_fit详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Python编程flask使用页面模版的方法
下一篇:Python编程中flask的简介与简单使用
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap