脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python对数据进行插值和下采样的方法

(编辑:jimmy 日期: 2025/9/25 浏览:3 次 )

使用Python进行插值非常方便,可以直接使用scipy中的interpolate

import numpy as np
x1 = np.linspace(1, 4096, 1024)
x_new = np.linspace(1, 4096, 4096)
from scipy import interpolate
tck = interpolate.splrep(x1, data)
y_bspline = interpolate.splev(x_new, tck)

其中y_bspline就是从1024插值得到的4096的数据

但是,scipy中好像并没有进行下采样的函数,嗯..难道是因为太过简单了么,不过好像用一个循环就可以完成,但如果把向量看成一个时间序列,使用pandas中的date_range模块也可以十分方便的以不同频率进行采样,并且,很多对文件的操作都是使用pandas操作的。

import pandas as pd
index = pd.date_range('1/1/2000', periods=4096, freq='T') #这个起始时间任意指定,freq为其频率
data = pd.read_table(filename, names=['feat'])
data.index = index
data_obj = data.resample('4T', label='right') #第一个为抽样频率,label表示左右开闭区间
data_new = data_new.asfreq()[0:]

因为data.resample返回的是一个 pandas.tseries.resample.DatetimeIndexResampler对象

所以想要获取其中的值可以通过 data_new.asfreq()[0:]获取

更多方法详见 pandas.DataFrame.resample

以上这篇Python对数据进行插值和下采样的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Python中pandas dataframe删除一行或一列:drop函数详解
下一篇:pandas 将list切分后存入DataFrame中的实例
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap