脚本专栏 
首页 > 脚本专栏 > 浏览文章

解决pandas使用read_csv()读取文件遇到的问题

(编辑:jimmy 日期: 2025/11/4 浏览:3 次 )

如下:

数据文件:

上海机场 (sh600009) 24.11 3.58 东风汽车 (sh600006) 74.25 1.74 中国国贸 (sh600007) 26.38 2.66 包钢股份 (sh600010) 61.01 2.35 武钢股份 (sh600005) 75.85 1.3 浦发银行 (sh600000) 6.65 0.96

在使用read_csv() API读取CSV文件时求取某一列数据比较大小时,

df=pd.read_csv(output_file,encoding='gb2312',names=['a','b','c'])
df.b>20

报错

TypeError:'>'not supported between instances of 'str' and 'int'

从返回的错误信息可知应该是数据类型错误,读回来的是‘str'

in : df.dtypes
out:
 a object
 b object
 c object
 dtype: object

由此可知 df.b 类型是 object

查阅read_csv()文档 配置:

dtype : Type name or dict of column -> type, default None
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (unsupported with engine='python'). Use str or object to preserve and not interpret dtype.

New in version 0.20.0: support for the Python parser.

可知默认使用‘str'或‘object'保存

因此在读取时只需要修改 'dtype' 配置就可以

df=pd.read_csv(output_file,encoding='gb2312',names=['a','b','c'],dtype={'b':np.folat64})

以上这篇解决pandas使用read_csv()读取文件遇到的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:在NumPy中创建空数组/矩阵的方法
下一篇:numpy中矩阵合并的实例
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap