脚本专栏 
首页 > 脚本专栏 > 浏览文章

浅谈DataFrame和SparkSql取值误区

(编辑:jimmy 日期: 2025/9/16 浏览:3 次 )

1、DataFrame返回的不是对象。

2、DataFrame查出来的数据返回的是一个dataframe数据集。

3、DataFrame只有遇见Action的算子才能执行

4、SparkSql查出来的数据返回的是一个dataframe数据集。

原始数据

scala> val parquetDF = sqlContext.read.parquet("hdfs://hadoop14:9000/yuhui/parquet/part-r-00004.gz.parquet")
df: org.apache.spark.sql.DataFrame = [timestamp: string, appkey: string, app_version: string, channel: string, lang: string, os_type: string, os_version: string, display: string, device_type: string, mac: string, network: string, nettype: string, suuid: string, register_days: int, country: string, area: string, province: string, city: string, event: string, use_interval_cat: string, use_duration_cat: string, use_interval: bigint, use_duration: bigint, os_upgrade_from: string, app_upgrade_from: string, page_name: string, event_name: string, error_type: string]

浅谈DataFrame和SparkSql取值误区

代码

package DataFrame
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext}
/**
 * Created by yuhui on 2016/6/14.
 */
object DataFrameTest {
 def main(args: Array[String]) {
 DataFrameInto()
 }
 def DataFrameInto() {
 val conf = new SparkConf()
 val sc = new SparkContext(conf)
 val sqlContext = new SQLContext(sc)
 val df = sqlContext.read.parquet("hdfs://hadoop14:9000/yuhui/parquet")
 //df.map(line => printinfo(line.getString(0)))
 //df.foreach(line => printinfo(line.getString(0)+" , "+line.getString(14)+" , "+line.getString(15)))
 //df.select("timestamp","country","area").foreach(line=>printinfo(line.toString))
 df.registerTempTable("infotable")
 sqlContext.sql("SELECT timestamp , country , area from infotable").foreach(line=>printinfo(line.toString))
 }
 def printinfo(msg: String) {println("printinfo函数-->" + msg) }
}

代码解析

1、df.map(line => printinfo(line.getString(0)))

这段代码不行执行printinfo()函数,因为只有map算子,没有Action算子。

2、df.foreach(line => printinfo(line.getString(0)+" , "+line.getString(14)+" , "+line.getString(15)))

通过Spark的Action算子接收数据进行操作,执行结果如下:

浅谈DataFrame和SparkSql取值误区

3、df.select("timestamp","country","area").foreach(line=>printinfo(line.toString))

通过DataFrame的API进行操作,再通过Spark的Action算子打印出来,执行结果如下:

浅谈DataFrame和SparkSql取值误区

4、sqlContext.sql("SELECT timestamp , country , area from infotable").foreach(line=>printinfo(line.toString))

执行结果如下:

浅谈DataFrame和SparkSql取值误区

以上这篇浅谈DataFrame和SparkSql取值误区就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:pandas 对series和dataframe进行排序的实例
下一篇:python pandas库中DataFrame对行和列的操作实例讲解
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap