脚本专栏 
首页 > 脚本专栏 > 浏览文章

通过Pandas读取大文件的实例

(编辑:jimmy 日期: 2025/11/4 浏览:3 次 )

当数据文件过大时,由于计算机内存有限,需要对大文件进行分块读取:

import pandas as pd
f = open('E:/学习相关/Python/数据样例/用户侧数据/test数据.csv')
reader = pd.read_csv(f, sep=',', iterator=True)
loop = True
chunkSize = 100000
chunks = []
while loop:
 try:
 chunk = reader.get_chunk(chunkSize)
 chunks.append(chunk)
 except StopIteration:
 loop = False
 print("Iteration is stopped.")
df = pd.concat(chunks, ignore_index=True)
print(df)

read_csv()函数的iterator参数等于True时,表示返回一个TextParser以便逐块读取文件;

chunkSize表示文件块的大小,用于迭代;

TextParser类的get_chunk方法用于读取任意大小的文件块;

StopIteration的异常表示在循环对象穷尽所有元素时报错;

concat()函数用于将数据做轴向连接:

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, Verify_integrity=False)

常用参数:

objs:Series,DataFrame或者是Panel构成的序列list;

axis:需要合并连接的轴,0是行,1是列;

join:连接的参数,inner或outer;

ignore=True表示重建索引。

以上这篇通过Pandas读取大文件的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:spark: RDD与DataFrame之间的相互转换方法
下一篇:Python简单实现网页内容抓取功能示例
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap