脚本专栏 
首页 > 脚本专栏 > 浏览文章

python多进程提取处理大量文本的关键词方法

(编辑:jimmy 日期: 2025/9/25 浏览:3 次 )

经常需要通过python代码来提取文本的关键词,用于文本分析。而实际应用中文本量又是大量的数据,如果使用单进程的话,效率会比较低,因此可以考虑使用多进程。

python的多进程只需要使用multiprocessing的模块就行,如果使用大量的进程就可以使用multiprocessing的进程池--Pool,然后不同进程处理时使用apply_async函数进行异步处理即可。

实验测试语料:message.txt中存放的581行文本,一共7M的数据,每行提取100个关键词。

代码如下:

#coding:utf-8
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
from multiprocessing import Pool,Queue,Process
import multiprocessing as mp 
import time,random
import os
import codecs
import jieba.analyse
jieba.analyse.set_stop_words("yy_stop_words.txt")
def extract_keyword(input_string):
	#print("Do task by process {proc}".format(proc=os.getpid()))
	tags = jieba.analyse.extract_tags(input_string, topK=100)
	#print("key words:{kw}".format(kw=" ".join(tags)))
	return tags
#def parallel_extract_keyword(input_string,out_file):
def parallel_extract_keyword(input_string):
	#print("Do task by process {proc}".format(proc=os.getpid()))
	tags = jieba.analyse.extract_tags(input_string, topK=100)
	#time.sleep(random.random())
	#print("key words:{kw}".format(kw=" ".join(tags)))
	#o_f = open(out_file,'w')
	#o_f.write(" ".join(tags)+"\n")
	return tags
if __name__ == "__main__":
	data_file = sys.argv[1]
	with codecs.open(data_file) as f:
		lines = f.readlines()
		f.close()
	
	out_put = data_file.split('.')[0] +"_tags.txt" 
	t0 = time.time()
	for line in lines:
		parallel_extract_keyword(line)
		#parallel_extract_keyword(line,out_put)
		#extract_keyword(line)
	print("串行处理花费时间{t}".format(t=time.time()-t0))
	
	pool = Pool(processes=int(mp.cpu_count()*0.7))
	t1 = time.time()
	#for line in lines:
		#pool.apply_async(parallel_extract_keyword,(line,out_put))
	#保存处理的结果,可以方便输出到文件
	res = pool.map(parallel_extract_keyword,lines)
	#print("Print keywords:")
	#for tag in res:
		#print(" ".join(tag))
	pool.close()
	pool.join()
	print("并行处理花费时间{t}s".format(t=time.time()-t1))

运行:

python data_process_by_multiprocess.py message.txt

message.txt是每行是一个文档,共581行,7M的数据

运行时间:

python多进程提取处理大量文本的关键词方法

不使用sleep来挂起进程,也就是把time.sleep(random.random())注释掉,运行可以大大节省时间。

python多进程提取处理大量文本的关键词方法

以上这篇python多进程提取处理大量文本的关键词方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:目前最全的python的就业方向
下一篇:使用python进行文本预处理和提取特征的实例
一句话新闻
高通与谷歌联手!首款骁龙PC优化Chrome浏览器发布
高通和谷歌日前宣布,推出首次面向搭载骁龙的Windows PC的优化版Chrome浏览器。
在对骁龙X Elite参考设计的初步测试中,全新的Chrome浏览器在Speedometer 2.1基准测试中实现了显著的性能提升。
预计在2024年年中之前,搭载骁龙X Elite计算平台的PC将面世。该浏览器的提前问世,有助于骁龙PC问世就获得满血表现。
谷歌高级副总裁Hiroshi Lockheimer表示,此次与高通的合作将有助于确保Chrome用户在当前ARM兼容的PC上获得最佳的浏览体验。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap