脚本专栏 
首页 > 脚本专栏 > 浏览文章

基于MTCNN/TensorFlow实现人脸检测

(编辑:jimmy 日期: 2025/11/4 浏览:3 次 )

人脸检测方法有许多,比如opencv自带的人脸Haar特征分类器和dlib人脸检测方法等。对于opencv的人脸检测方法,有点是简单,快速;存在的问题是人脸检测效果不好。正面/垂直/光线较好的人脸,该方法可以检测出来,而侧面/歪斜/光线不好的人脸,无法检测。因此,该方法不适合现场应用。对于dlib人脸检测方法 ,效果好于opencv的方法,但是检测力度也难以达到现场应用标准。

MTCNN是基于深度学习的人脸检测方法,对自然环境中光线,角度和人脸表情变化更具有鲁棒性,人脸检测效果更好;同时,内存消耗不大,可以实现实时人脸检测。

代码如下:

from scipy import misc 
import tensorflow as tf 
import detect_face 
import cv2 
import matplotlib.pyplot as plt 
%pylab inline 
 
minsize = 20 # minimum size of face 
threshold = [ 0.6, 0.7, 0.7 ] # three steps's threshold 
factor = 0.709 # scale factor 
gpu_memory_fraction=1.0 
 
 
print('Creating networks and loading parameters') 
 
with tf.Graph().as_default(): 
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction) 
    sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) 
    with sess.as_default(): 
      pnet, rnet, onet = detect_face.create_mtcnn(sess, None) 
 
image_path = '/home/cqh/faceData/multi_face/multi_face3.jpg'       
 
img = misc.imread(image_path)       
bounding_boxes, _ = detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) 
nrof_faces = bounding_boxes.shape[0]#人脸数目 
print('找到人脸数目为:{}'.format(nrof_faces)) 
 
print(bounding_boxes) 
 
crop_faces=[] 
for face_position in bounding_boxes: 
  face_position=face_position.astype(int) 
  print(face_position[0:4]) 
  cv2.rectangle(img, (face_position[0], face_position[1]), (face_position[2], face_position[3]), (0, 255, 0), 2) 
  crop=img[face_position[1]:face_position[3], 
       face_position[0]:face_position[2],] 
   
  crop = cv2.resize(crop, (96, 96), interpolation=cv2.INTER_CUBIC ) 
  print(crop.shape) 
  crop_faces.append(crop) 
  plt.imshow(crop) 
  plt.show() 
   
plt.imshow(img) 
plt.show() 

实验效果如下:

基于MTCNN/TensorFlow实现人脸检测

  基于MTCNN/TensorFlow实现人脸检测

基于MTCNN/TensorFlow实现人脸检测

基于MTCNN/TensorFlow实现人脸检测

再上一组效果图:

基于MTCNN/TensorFlow实现人脸检测

基于MTCNN/TensorFlow实现人脸检测

 关于MTCNN,更多资料可以点击链接

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

上一篇:解决python matplotlib imshow无法显示的问题
下一篇:Jupyter中直接显示Matplotlib的图形方法
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap