脚本专栏 
首页 > 脚本专栏 > 浏览文章

使用pandas的DataFrame的plot方法绘制图像的实例

(编辑:jimmy 日期: 2025/11/4 浏览:3 次 )

使用了pandas的Series方法绘制图像体验之后感觉直接用matplotlib的功能好用了不少,又试用了DataFrame的方法之后发现这个更加人性化。

写代码如下:

from pandas import Series,DataFrame
from numpy.random import randn
import numpy as np
import matplotlib.pyplot as plt
df = DataFrame(randn(10,5),columns=['A','B','C','D','E'],index = np.arange(0,100,10))
df.plot()
plt.show()

程序运行结果如下:

使用pandas的DataFrame的plot方法绘制图像的实例

使用DataFrame的plot方法绘制图像会按照数据的每一列绘制一条曲线,参数中的columns就是列的名称而index本来是DataFrame的行名称。图形绘制成功之后还会按照列的名称绘制图例,这个功能确实是比较赞的。如果使用matplotlib的基本绘制功能,图例的添加还需要自己额外处理。看来,数据的规整化不仅仅是为了向量化以及计算加速做准备,而且为数据的可视化提供了不少便捷的方法。

以上这篇使用pandas的DataFrame的plot方法绘制图像的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:解决seaborn在pycharm中绘图不出图的问题
下一篇:快速解决PyCharm无法引用matplotlib的问题
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap