脚本专栏 
首页 > 脚本专栏 > 浏览文章

老生常谈Python进阶之装饰器

(编辑:jimmy 日期: 2024/11/30 浏览:3 次 )

函数也是对象

要理解Python装饰器,首先要明白在Python中,函数也是一种对象,因此可以把定义函数时的函数名看作是函数对象的一个引用。既然是引用,因此可以将函数赋值给一个变量,也可以把函数作为一个参数传递或返回。同时,函数体中也可以再定义函数。

装饰器本质

可以通过编写一个纯函数的例子来还原装饰器所要做的事。

def decorator(func):
  
  def wrap():
    print("Doing someting before executing func()")
    func()
    print("Doing someting after executing func()")

  return wrap


def fun_test():
  print("func")


fun_test = decorator(fun_test)
fun_test()

# Output:
# Doing someting before executing func()
# func
# Doing someting after executing func()

fun_test所指向的函数的引用传递给decorator()函数

decorator()函数中定义了wrap()子函数,这个子函数会调用通过func引用传递进来的fun_test()函数,并在调用函数的前后做了一些其他的事情

decorator()函数返回内部定义的wrap()函数引用

fun_test接收decorator()返回的函数引用,从而指向了一个新的函数对象

通过fun_test()调用新的函数执行wrap()函数的功能,从而完成了对fun_test()函数的前后装饰

Python中使用装饰器

在Python中可以通过@符号来方便的使用装饰器功能。

def decorator(func):
  
  def wrap():
    print("Doing someting before executing func()")
    func()
    print("Doing someting after executing func()")

  return wrap

@decorator
def fun_test():
  print("func")


fun_test()

# Output:
# Doing someting before executing func()
# func
# Doing someting after executing func()

装饰的功能已经实现了,但是此时执行:

 

print(fun_test.__name__)

# Output:
# wrap

 fun_test.__name__已经变成了wrap,这是应为wrap()函数已经重写了我们函数的名字和注释文档。此时可以通过functools.wraps来解决这个问题。wraps接受一个函数来进行装饰,并加入了复制函数名称、注释文档、参数列表等等功能。这可以让我们在装饰器里面访问在装饰之前的函数的属性。

更规范的写法:

from functools import wraps

def decorator(func):
  @wraps(func)
  def wrap():
    print("Doing someting before executing func()")
    func()
    print("Doing someting after executing func()")

  return wrap


@decorator
def fun_test():
  print("func")


fun_test()
print(fun_test.__name__)

# Output:
# Doing someting before executing func()
# func
# Doing someting after executing func()
# fun_test

带参数的装饰器

通过返回一个包裹函数的函数,可以模仿wraps装饰器,构造出一个带参数的装饰器。

from functools import wraps

def loginfo(info='info1'):
  def loginfo_decorator(func):
    @wraps(func)
    def wrap_func(*args, **kwargs):
      print(func.__name__ + ' was called')
      print('info: %s' % info)
      
      return func(*args, **kwargs)
    return wrap_func
  return loginfo_decorator
  
@loginfo()
def func1():
  pass
  
func1()

# Output:
# func1 was called
# info: info1

@loginfo(info='info2')
def func2():
  pass

func2()
# Output:
# func2 was called
# info: info2

装饰器类

通过编写类的方法也可以实现装饰器,并让装饰器具备继承等面向对象中更实用的特性

首先编写一个装饰器基类:

from functools import wraps

class loginfo:
  def __init__(self, info='info1'):
    self.info = info
    
  def __call__(self, func):
    @wrap
    def wrap_func(*args, **kwargs):
      print(func.__name__ + ' was called')
      print('info: %s' % self.info)
      
      self.after()  # 调用after方法,可以在子类中实现
      return func(*args, **kwargs)
    return wrap_func

  def after(self):
    pass


@loginfo(info='info2')
def func1():
  pass
  
# Output:
# func1 was called
# info: info1

再通过继承loginfo类,扩展装饰器的功能:

class loginfo_after(loginfo):
  def __init__(self, info2='info2', *args, **kwargs):
    self.info2 = info2
    super(loginfo_after, self).__init__(*args, **kwargs)

  def after(self):
    print('after: %s' % self.info2)


@loginfo_after()
def func2():
  pass

func2()
  
# Output:
# func2 was called
# info: info1
# after: info2

以上这篇老生常谈Python进阶之装饰器就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

上一篇:Python遍历文件夹和读写文件的实现方法
下一篇:python中requests小技巧
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap