脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python中functools模块函数解析

(编辑:jimmy 日期: 2024/11/30 浏览:3 次 )

Python自带的 functools 模块提供了一些常用的高阶函数,也就是用于处理其它函数的特殊函数。换言之,就是能使用该模块对可调用对象进行处理。

functools模块函数概览

  • functools.cmp_to_key(func)
  • functools.total_ordering(cls)
  • functools.reduce(function, iterable[, initializer])
  • functools.partial(func[, args][, *keywords])
  • functools.update_wrapper(wrapper, wrapped[, assigned][, updated])
  • functools.wraps(wrapped[, assigned][, updated])

functools.cmp_to_key()

语法:

functools.cmp_to_key(func) 

该函数用于将旧式的比较函数转换为关键字函数。

旧式的比较函数:接收两个参数,返回比较的结果。返回值小于零则前者小于后者,返回值大于零则相反,返回值等于零则两者相等。

关键字函数:接收一个参数,返回其对应的可比较对象。例如 sorted(), min(), max(), heapq.nlargest(), heapq.nsmallest(), itertools.groupby() 都可作为关键字函数。

在 Python 3 中,有很多地方都不再支持旧式的比较函数,此时可以使用 cmp_to_key() 进行转换。

示例:

sorted(iterable, key=cmp_to_key(cmp_func)) 

functools.total_ordering()

语法:

functools.total_ordering(cls) 

这是一个类装饰器,用于自动实现类的比较运算。

我们只需要在类中实现 __eq__() 方法和以下方法中的任意一个 __lt__(), __le__(), __gt__(), __ge__(),那么 total_ordering() 就能自动帮我们实现余下的几种比较运算。

示例:

@total_ordering
class Student: 
  def __eq__(self, other):
    return ((self.lastname.lower(), self.firstname.lower()) ==
        (other.lastname.lower(), other.firstname.lower()))
  def __lt__(self, other):
    return ((self.lastname.lower(), self.firstname.lower()) <
        (other.lastname.lower(), other.firstname.lower()))

functools.reduce()

语法:

functools.reduce(function, iterable[, initializer]) 

该函数与 Python 内置的 reduce() 函数相同,主要用于编写兼容 Python 3 的代码。

functools.partial()

语法:

functools.partial(func[, *args][, **keywords]) 

该函数返回一个 partial 对象,调用该对象的效果相当于调用 func 函数,并传入位置参数 args 和关键字参数 keywords 。如果调用该对象时传入了位置参数,则这些参数会被添加到 args 中。如果传入了关键字参数,则会被添加到 keywords 中。

partial() 函数的等价实现大致如下:

def partial(func, *args, **keywords): 
  def newfunc(*fargs, **fkeywords):
    newkeywords = keywords.copy()
    newkeywords.update(fkeywords)
    return func(*(args + fargs), **newkeywords)
  newfunc.func = func
  newfunc.args = args
  newfunc.keywords = keywords
  return newfunc

partial() 函数主要用于“冻结”某个函数的部分参数,返回一个参数更少、使用更简单的函数对象。

示例:

> from functools import partial
> basetwo = partial(int, base=2)
> basetwo.__doc__ = 'Convert base 2 string to an int.'
> basetwo('10010')
18 


functools.update_wrapper()

语法:

functools.update_wrapper(wrapper, wrapped[, assigned][, updated]) 

该函数用于更新包装函数(wrapper),使它看起来像原函数一样。可选的参数是一个元组,assigned 元组指定要直接使用原函数的值进行替换的属性,updated 元组指定要对照原函数进行更新的属性。这两个参数的默认值分别是模块级别的常量:WRAPPER_ASSIGNMENTS 和 WRAPPER_UPDATES。前者指定了对包装函数的 __name__, __module__, __doc__ 属性进行直接赋值,而后者指定了对包装函数的 __dict__ 属性进行更新。

该函数主要用于装饰器函数的定义中,置于包装函数之前。如果没有对包装函数进行更新,那么被装饰后的函数所具有的元信息就会变为包装函数的元信息,而不是原函数的元信息。

functools.wraps()

语法:

functools.wraps(wrapped[, assigned][, updated]) 

wraps() 简化了 update_wrapper() 函数的调用。它等价于 partial(update_wrapper, wrapped=wrapped, assigned, updated=updated)。

示例:

> from functools import wraps
> def my_decorator(f):
...   @wraps(f)
...   def wrapper(*args, **kwds):
...     print 'Calling decorated function'
...     return f(*args, **kwds)
...   return wrapper

> @my_decorator
... def example():
...   """Docstring"""
...   print 'Called example function'

> example()
Calling decorated function 
Called example function 
> example.__name__
'example' 
> example.__doc__
'Docstring' 

如果不使用这个函数,示例中的函数名就会变成 wrapper ,并且原函数 example() 的说明文档(docstring)就会丢失。

上一篇:python中pandas.DataFrame排除特定行方法示例
下一篇:python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap