脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python中对象迭代与反迭代的技巧总结

(编辑:jimmy 日期: 2025/1/18 浏览:3 次 )

一、如何实现可迭代对象和迭代器对象?

实际案例

某软件要求从网络抓取各个城市气味信息,并其次显示:

北京: 15 ~ 20 天津: 17 ~ 22 长春: 12 ~ 18 ......

如果一次抓取所有城市天气再显示,显示第一个城市气温时,有很高的延时,并且浪费存储空间,我们期望以用时访问的策略,并且把所有城市气温封装到一个对象里,可用for语句进行迭代,如何解决?

解决方案

实现一个迭代器对象Weatherlterator,next方法每次返回一个城市气温,实现一个可迭代对象Weatherlterable,————iter__方法返回一个迭代器对象

import requests from collections import Iterable, Iterator # 气温迭代器 class WeatherIterator(Iterator): def __init__(self, cities): self.cities = cities self.index = 0 def getWeather(self, city): r = requests.get('http://wthrcdn.etouch.cn/weather_mini"htmlcode">
C:\Python\Python35\python.exe E:/python-intensive-training/s2.py 北京:低温 21℃ , 高温 30℃ 上海:低温 23℃ , 高温 26℃ 广州:低温 26℃ , 高温 34℃ 深圳:低温 27℃ , 高温 33℃ Process finished with exit code 0

二、如何使用生成器函数实现可迭代对象?

实际案例

实现一个可迭代对象的类,它能迭代出给定范围内所有素数:

python pn = PrimeNumbers(1, 30) for k in pn: print(k) `` 输出结果text
2 3 5 7 11 13 17 19 23 29
“`

解决方案

-将该类的__iter__方法实现生成器函数,每次yield返回一个素数

class PrimeNumbers: def __init__(self, start, stop): self.start = start self.stop = stop def isPrimeNum(self, k): if k < 2: return False for i in range(2, k): if k % i == 0: return False return True def __iter__(self): for k in range(self.start, self.stop + 1): if self.isPrimeNum(k): yield k for x in PrimeNumbers(1, 20): print(x)

运行结果

C:\Python\Python35\python.exe E:/python-intensive-training/s3.py 2 3 5 7 11 13 17 19 Process finished with exit code 0

三、如何进行反向迭代以及如何实现反向迭代?

实际案例

实现一个连续浮点数生成器FloatRange(和rrange类似),根据给定范围(start, stop)和步进值(step)产生一些列连续浮点数,如迭代FloatRange(3.0,4.0,0.2)可产生序列:

正向:3.0 > 3.2 > 3.4 > 3.6 > 3.8 > 4.0 反向:4.0 > 3.8 > 3.6 > 3.4 > 3.2 > 3.0

解决方案

实现反向迭代协议的__reversed__方法,它返回一个反向迭代器

class FloatRange: def __init__(self, start, stop, step=0.1): self.start = start self.stop = stop self.step = step def __iter__(self): t = self.start while t <= self.stop: yield t t += self.step def __reversed__(self): t = self.stop while t >= self.start: yield t t -= self.step print("正相迭代-----") for n in FloatRange(1.0, 4.0, 0.5): print(n) print("反迭代-----") for x in reversed(FloatRange(1.0, 4.0, 0.5)): print(x)

输出结果

C:\Python\Python35\python.exe E:/python-intensive-training/s4.py 正相迭代----- 1.0 1.5 2.0 2.5 3.0 3.5 4.0 反迭代----- 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Process finished with exit code 0

四、如何对迭代器做切片操作?

实际案例

有某个文本文件,我们想都去其中某范围的内容,如100~300行之间的内容,python中文本文件是可迭代对象,我们是否可以使用类似列表切片的方式得到一个100~300行文件内容的生成器?

解决方案

使用标准库中的itertools.islice,它能返回一个迭代器对象切片的生成器

from itertools import islice f = open('access.log') # # 前500行 # islice(f, 500) # # 100行以后的 # islice(f, 100, None) for line in islice(f,100,300): print(line)

islice每次训话都会消耗之前的迭代对象

l = range(20) t = iter(l) for x in islice(t, 5, 10): print(x) print('第二次迭代') for x in t: print(x)

输出结果

C:\Python\Python35\python.exe E:/python-intensive-training/s5.py 5 6 7 8 9 第二次迭代 10 11 12 13 14 15 16 17 18 19 Process finished with exit code 0

五、如何在一个for语句中迭代多个可迭代对象?

实际案例

1、某班学生期末考试成绩,语文、数学、英语分别存储再3个列表中,同时迭代三个列表,计算每个学生的总分(并行)

2、某年纪有四个班,某次考试没班英语成绩分别存储在四个列表中,依次迭代每个列表,统计全学年成绩高于90分人数(串行)

解决方案

并行:使用内置函数zip,它能将多个可迭代对象合并,每次迭代返回一个元组

from random import randint # 申城语文成绩,# 40人,分数再60-100之间 chinese = [randint(60, 100) for _ in range(40)] math = [randint(60, 100) for _ in range(40)] # 数学 english = [randint(60, 100) for _ in range(40)] # 英语 total = [] for c, m, e in zip(chinese, math, english): total.append(c + m + e) print(total)

执行结果如下:

C:\Python\Python35\python.exe E:/python-intensive-training/s6.py [232, 234, 259, 248, 241, 236, 245, 253, 275, 238, 240, 239, 283, 256, 232, 224, 201, 255, 206, 239, 254, 216, 287, 268, 235, 223, 289, 221, 266, 222, 231, 240, 226, 235, 255, 232, 235, 250, 241, 225] Process finished with exit code 0

串行:使用标准库中的itertools.chain,它能将多个可迭代对象连接

from random import randint from itertools import chain # 生成四个班的随机成绩 e1 = [randint(60, 100) for _ in range(40)] e2 = [randint(60, 100) for _ in range(42)] e3 = [randint(60, 100) for _ in range(45)] e4 = [randint(60, 100) for _ in range(50)] # 默认人数=1 count = 0 for s in chain(e1, e2, e3, e4): # 如果当前分数大于90,就让count+1 if s > 90: count += 1 print(count)

输出结果

C:\Python\Python35\python.exe E:/python-intensive-training/s6.py 48 Process finished with exit code 0

总结

以上就是这篇文章的全部内容,希望对大家的学习或者工作带来一定的帮助,如果有疑问大家可以留言交流。

上一篇:Python中字符串的处理技巧分享
下一篇:发布你的Python模块详解
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap