脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python正规则表达式学习指南

(编辑:jimmy 日期: 2024/11/3 浏览:3 次 )

1. 正则表达式基础

1.1. 简单介绍

正则表达式并不是Python的一部分。正则表达式是用于处理字符串的强大工具,拥有自己独特的语法以及一个独立的处理引擎,效率上可能不如str自带的方法,但功能十分强大。得益于这一点,在提供了正则表达式的语言里,正则表达式的语法都是一样的,区别只在于不同的编程语言实现支持的语法数量不同;但不用担心,不被支持的语法通常是不常用的部分。如果已经在其他语言里使用过正则表达式,只需要简单看一看就可以上手了。

下图展示了使用正则表达式进行匹配的流程:

Python正规则表达式学习指南 

正则表达式的大致匹配过程是:依次拿出表达式和文本中的字符比较,如果每一个字符都能匹配,则匹配成功;一旦有匹配不成功的字符则匹配失败。如果表达式中有量词或边界,这个过程会稍微有一些不同,但也是很好理解的,看下图中的示例以及自己多使用几次就能明白。

下图列出了Python支持的正则表达式元字符和语法:

Python正规则表达式学习指南

1.2. 数量词的贪婪模式与非贪婪模式

正则表达式通常用于在文本中查找匹配的字符串。Python里数量词默认是贪婪的(在少数语言里也可能是默认非贪婪),总是尝试匹配尽可能多的字符;非贪婪的则相反,总是尝试匹配尽可能少的字符。例如:正则表达式"ab*"如果用于查找"abbbc",将找到"abbb"。而如果使用非贪婪的数量词"ab*",将找到"a"。

1.3. 反斜杠的困扰

与大多数编程语言相同,正则表达式里使用"\"作为转义字符,这就可能造成反斜杠困扰。假如你需要匹配文本中的字符"\",那么使用编程语言表示的正则表达式里将需要4个反斜杠"\\\\":前两个和后两个分别用于在编程语言里转义成反斜杠,转换成两个反斜杠后再在正则表达式里转义成一个反斜杠。Python里的原生字符串很好地解决了这个问题,这个例子中的正则表达式可以使用r"\\"表示。同样,匹配一个数字的"\\d"可以写成r"\d"。有了原生字符串,你再也不用担心是不是漏写了反斜杠,写出来的表达式也更直观。

1.4. 匹配模式

正则表达式提供了一些可用的匹配模式,比如忽略大小写、多行匹配等,这部分内容将在Pattern类的工厂方法re.compile(pattern[, flags])中一起介绍。

2. re模块

2.1. 开始使用re

Python通过re模块提供对正则表达式的支持。使用re的一般步骤是先将正则表达式的字符串形式编译为Pattern实例,然后使用Pattern实例处理文本并获得匹配结果(一个Match实例),最后使用Match实例获得信息,进行其他的操作。

# encoding: UTF-8
import re
# 将正则表达式编译成Pattern对象
pattern = re.compile(r'hello')
# 使用Pattern匹配文本,获得匹配结果,无法匹配时将返回None
match = pattern.match('hello world!')
if match:
# 使用Match获得分组信息
print match.group()
### 输出 ###
# hello 
re.compile(strPattern[, flag]):

这个方法是Pattern类的工厂方法,用于将字符串形式的正则表达式编译为Pattern对象。 第二个参数flag是匹配模式,取值可以使用按位或运算符'|'表示同时生效,比如re.I | re.M。另外,你也可以在regex字符串中指定模式,比如re.compile('pattern', re.I | re.M)与re.compile('("htmlcode">

a = re.compile(r"""\d + # the integral part
\. # the decimal point
\d * # some fractional digits""", re.X)
b = re.compile(r"\d+\.\d*")

re提供了众多模块方法用于完成正则表达式的功能。这些方法可以使用Pattern实例的相应方法替代,唯一的好处是少写一行re.compile()代码,但同时也无法复用编译后的Pattern对象。这些方法将在Pattern类的实例方法部分一起介绍。如上面这个例子可以简写为:

m = re.match(r'hello', 'hello world!')
print m.group()

re模块还提供了一个方法escape(string),用于将string中的正则表达式元字符如*/+/"htmlcode">

import re
m = re.match(r'(\w+) (\w+)("m.string:", m.string
print "m.re:", m.re
print "m.pos:", m.pos
print "m.endpos:", m.endpos
print "m.lastindex:", m.lastindex
print "m.lastgroup:", m.lastgroup
print "m.group(1,2):", m.group(1, 2)
print "m.groups():", m.groups()
print "m.groupdict():", m.groupdict()
print "m.start(2):", m.start(2)
print "m.end(2):", m.end(2)
print "m.span(2):", m.span(2)
print r"m.expand(r'\2 \1\3'):", m.expand(r'\2 \1\3')
### output ###
# m.string: hello world!
# m.re: <_sre.SRE_Pattern object at 0x016E1A38>
# m.pos: 0
# m.endpos: 12
# m.lastindex: 3
# m.lastgroup: sign
# m.group(1,2): ('hello', 'world')
# m.groups(): ('hello', 'world', '!')
# m.groupdict(): {'sign': '!'}
# m.start(2): 6
# m.end(2): 11
# m.span(2): (6, 11)
# m.expand(r'\2 \1\3'): world hello!

2.3. Pattern

Pattern对象是一个编译好的正则表达式,通过Pattern提供的一系列方法可以对文本进行匹配查找。

Pattern不能直接实例化,必须使用re.compile()进行构造。

Pattern提供了几个可读属性用于获取表达式的相关信息:

1.pattern: 编译时用的表达式字符串。

2.flags: 编译时用的匹配模式。数字形式。

3.groups: 表达式中分组的数量。

4.groupindex: 以表达式中有别名的组的别名为键、以该组对应的编号为值的字典,没有别名的组不包含在内。

import re
p = re.compile(r'(\w+) (\w+)("p.pattern:", p.pattern
print "p.flags:", p.flags
print "p.groups:", p.groups
print "p.groupindex:", p.groupindex
### output ###
# p.pattern: (\w+) (\w+)("htmlcode">
# encoding: UTF-8 
import re 
# 将正则表达式编译成Pattern对象 
pattern = re.compile(r'world') 
# 使用search()查找匹配的子串,不存在能匹配的子串时将返回None 
# 这个例子中使用match()无法成功匹配 
match = pattern.search('hello world!') 
if match: 
# 使用Match获得分组信息 
print match.group() 
### 输出 ### 
# world

3.split(string[, maxsplit]) | re.split(pattern, string[, maxsplit]):

按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。

import re
p = re.compile(r'\d+')
print p.split('one1two2three3four4')
### output ###
# ['one', 'two', 'three', 'four', '']

4.findall(string[, pos[, endpos]]) | re.findall(pattern, string[, flags]):

搜索string,以列表形式返回全部能匹配的子串。

import re
p = re.compile(r'\d+')
print p.findall('one1two2three3four4')
### output ###
# ['1', '2', '3', '4']

5.finditer(string[, pos[, endpos]]) | re.finditer(pattern, string[, flags]):

搜索string,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。

import re
p = re.compile(r'\d+')
for m in p.finditer('one1two2three3four4'):
print m.group(),
### output ###
# 1 2 3 4

6.sub(repl, string[, count]) | re.sub(pattern, repl, string[, count]):

使用repl替换string中每一个匹配的子串后返回替换后的字符串。

当repl是一个字符串时,可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。

当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。

count用于指定最多替换次数,不指定时全部替换。

import re
p = re.compile(r'(\w+) (\w+)')
s = 'i say, hello world!'
print p.sub(r'\2 \1', s)
def func(m):
return m.group(1).title() + ' ' + m.group(2).title()
print p.sub(func, s)
### output ###
# say i, world hello!
# I Say, Hello World!

7.subn(repl, string[, count]) |re.sub(pattern, repl, string[, count]):

返回 (sub(repl, string[, count]), 替换次数)。

import re
p = re.compile(r'(\w+) (\w+)')
s = 'i say, hello world!'
print p.subn(r'\2 \1', s)
def func(m):
return m.group(1).title() + ' ' + m.group(2).title()
print p.subn(func, s)
### output ###
# ('say i, world hello!', 2)
# ('I Say, Hello World!', 2) 

以上所述是小编给大家介绍的Python正规则表达式学习指南,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!

上一篇:教你用Type Hint提高Python程序开发效率
下一篇:Python如何实现文本转语音
Windows上运行安卓你用过了吗
在去年的5月23日,借助Intel Bridge Technology以及Intel Celadon两项技术的驱动,Intel为PC用户带来了Android On Windows(AOW)平台,并携手国内软件公司腾讯共同推出了腾讯应用宝电脑版,将Windows与安卓两大生态进行了融合,PC的使用体验随即被带入到了一个全新的阶段。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap