脚本专栏 
首页 > 脚本专栏 > 浏览文章

Python的SQLalchemy模块连接与操作MySQL的基础示例

(编辑:jimmy 日期: 2025/1/17 浏览:3 次 )

一、SQLalchemy简介
SQLAlchemy是一个开源的SQL工具包,基本Python编程语言的MIT许可证而发布的对象关系映射器。SQLAlchemy提供了“一个熟知的企业级全套持久性模式,使用ORM等独立SQLAlchemy的一个优势在于其允许开发人员首先考虑数据模型,并能决定稍后可视化数据的方式。
二、SQLAlchempy的安装
首先需安装mysql,这里就不再多说了.....
然后,下载SQLAlchemy(http://www.sqlalchemy.org/download.html),这里我们以Windows系统为例,然后打开cmd,在安装包文件目录下,运行

python setup.py install

,通过python下输入

import sqlalchemy

,执行未报错则表示安装成功
 
三、SQLAlchemy的使用实例

1、完成简单数据表信息查询

# 1. 导入模块
from sqlalchemy import *
from sqlclchemy.orm import *
# 2. 建立数据库引擎
mysql_engine = create_engine("$address", echo, module)
 #address 数据库://用户名:密码(没有密码则为空)@主机名:端口/数据库名
 #echo标识用于设置通过python标准日志模块完成的SQLAlchemy日志系统,当开启日志功能,我们将能看到所有的SQL生成代码
# 3. 建立连接
connection = mysql_engine.connect()
# 4. 查询表信息
result = connection.execute("select name from t_name)
for row in result:
 print "name: ", row['name']
# 5. 关闭连接
connection.close()

 
2、插入新的数据表

# 1. 导入模块
from sqlalchemy import *
from sqlclchemy.orm import *
# 2. 建立数据库引擎
mysql_engine = create_engine("$address", echo, module)
 #address 数据库://用户名:密码(没有密码则为空)@主机名:端口/数据库名
 #echo标识用于设置通过python标准日志模块完成的SQLAlchemy日志系统,当开启日志功能,我们将能看到所有的SQL生成代码
# 3. 设置metadata并将其绑定到数据库引擎
metadata = Metadata(mysql_engine)
# 4. 定义需新建的表
users = Table('users', metadata,Column('user_id', Integer, primary_key=True),
 Column('name', String(40)),
 Column('age', Integer),
 Column('password', String),)
 #Table实现方式与SQL语言中的CRETE TABLE类似
# 5. 在数据库中创建表
metadata.create_all(mysql_engine)
 #向数据库发出CREATE TABLE命令,由此数据库新建名为users的表
 #调用时会检查已经存在的表结构,因此可重复调用
# 6. 创建一个与数据库中的users表匹配的python类
class user():
 def __int__(self, name, fullname, password):
 self.name = name
 self.fullname = fullname
 self.passwd = passwd
 #python类的属性需与users表的列名一致
# 7. 设置映射
from sqlalchemy.orm import mapper
mapper(user, users)
 # mapper()创建一个新的Mapper对象,与定义的类相关联
#需要注意的是,通过mapper建立映射的数据表必须带有主键,如果没有主键就无法定位某个table的某行row, 
#如果无法定位某行row, 就无法做Object-relational mapping这样的映射
# 8. 创建session
Session = sessionmaker(bind=mysql_egnine)
session = Session()
 #由此我们只需对python的user类的操作,后台数据库的具体实现交由session完成
# 9. 执行
session.commit()
 #实现与数据库的交互
# 10. 查询
usr_info = session.query(user).filter_by(age=12).first()
 #返回数据库中年纪12岁的第一条数据

上面结合SQLAlchemy中ORM部分实现一个Mapper对象,将类的实例对应表中的记录,实例的属性对应字段。实现一个Data Mapping需要三个元素:Tabella Metadata, user-defined class, mapper对象,这三个是实现对象对表映射的基本元素,在此基础上,可实现一对多的映射,实现类似多表查询的问题
首先创建两个相关联的表Student, Score,表Score中以主表的id字段为外键

Student = Table('student', engine,  
              column(‘id', Interger, primary_key = True), 
              column('name', String, nullable=False), 
              column('age', Interger) 
) 
Score = Table('score', engine,  
            column('id', Integer, primary_key=True), 
            column('student_id', Integer, ForeignKey(student.id)) 
            column('category', String, nullable=False), 
            column('score', Integer)   
) 

两表中,Score表以Student表中id项为外键,一般称Student表为主表,Score表为从表
表创建好后,那同样,在python中需定义两个与表相对应的类

class student_type(object): 
     def __init__(self): 
        self.name = None 
class score_type(object): 
     def __init__(self): 
        self.category = None 

在建立mapping时,我们只需要体现两个表间又相互关联关系,
并不关心表中具体的主键与外键等关系(由SQLAlchemy处理),
当需要体现表student与表score间的关联关系,mapper具体的定义方法如:
mapper(student_type, student, properties={'_scores': relation(score_type, Score)})
通过properties中参数,实现score_type 与Score的映射,
由此可以通过访问student中的'_scores'属性来查询Score表中的值
另外,properties是一个字典,可以添加多个属性,SQLAlchemy中有些模块如backref, 也可导入

综上,使用关系映射可以方便地从一个对象直接找到相对应的其他的对象

上一篇:Python的requests网络编程包使用教程
下一篇:Python中的异常处理相关语句基础学习笔记
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap