Python验证码识别处理实例
(编辑:jimmy 日期: 2025/1/16 浏览:3 次 )
一、准备工作与代码实例
(1)安装PIL:下载后是一个exe,直接双击安装,它会自动安装到C:\Python27\Lib\site-packages中去,
(2)pytesser:下载解压后直接放C:\Python27\Lib\site-packages(根据你安装的Python路径而不同),同时,新建一个pytheeer.pth,内容就写pytesser,注意这里的内容一定要和pytesser这个文件夹同名,意思就是pytesser文件夹,pytesser.pth,及内容都要一样!
(3)Tesseract OCR engine下载:下载后解压,tessdata文件夹,用其替换掉pytesser解压后的tessdata文件夹即可。
二、验证
(1)原理:
验证码图像处理
验证码图像识别技术主要是操作图片内的像素点,通过对图片的像素点进行一系列的操作,最后输出验证码图像内的每个字符的文本矩阵。
- 1、读取图片
- 2、图片降噪
- 3、图片切割
- 4、图像文本输出
(2)验证字符识别
验证码内的字符识别主要以机器学习的分类算法来完成,目前我所利用的字符识别的算法为KNN(K邻近算法)和SVM (支持向量机算法),后面我 会对这两个算法的适用场景进行详细描述。
- 1、获取字符矩阵
- 2、矩阵进入分类算法
- 3、输出结果
要验证的图片如下:
(3)、简单的命令:
from pytesser import * image = Image.open('1.jpg') # Open image object using PIL print image_to_string(image) # Run tesseract.exe on image
然后运行:
或者直接:
print image_file_to_string('fnord.tif')
同样能输出结果!
(4)、复杂一点的
上面的只能对一些比较简单的做处理,一
原理:彩色转灰度,灰度转二值,二值图像识别
# 验证码识别,此程序只能识别数据验证码 import Image import ImageEnhance import ImageFilter import sys from pytesser import * # 二值化 threshold = 140 table = [] for i in range(256): if i < threshold: table.append(0) else: table.append(1) #由于都是数字 #对于识别成字母的 采用该表进行修正 rep={'O':'0', 'I':'1','L':'1', 'Z':'2', 'S':'8' }; def getverify1(name): #打开图片 im = Image.open(name) #转化到灰度图 imgry = im.convert('L') #保存图像 imgry.save('g'+name) #二值化,采用阈值分割法,threshold为分割点 out = imgry.point(table,'1') out.save('b'+name) #识别 text = image_to_string(out) #识别对吗 text = text.strip() text = text.upper(); for r in rep: text = text.replace(r,rep[r]) #out.save(text+'.jpg') print text return text getverify1('1.jpg') #注意这里的图片要和此文件在同一个目录,要不就传绝对路径也行
运行后效果:
以上就是本文的全部内容,希望对大家的学习有所帮助。
下一篇:简单介绍Python中的几种数据类型