脚本专栏 
首页 > 脚本专栏 > 浏览文章

35个Python编程小技巧

(编辑:jimmy 日期: 2024/11/27 浏览:3 次 )

这篇博客其实就是这个集合整理后一部分的公开亮相。如果你已经是个python大牛,那么基本上你应该知道这里面的大多数用法了,但我想你应该也能发现一些你不知道的新技巧。而如果你之前是一个c,c++,java的程序员,同时在学习python,或者干脆就是一个刚刚学习编程的新手,那么你应该会看到很多特别有用能让你感到惊奇的实用技巧,就像我当初一样。

每一个技巧和语言用法都会在一个个实例中展示给大家,也不需要有其他的说明。我已经尽力把每个例子弄的通俗易懂,但是因为读者对python的熟悉程度不同,仍然可能难免有一些晦涩的地方。所以如果这些例子本身无法让你读懂,至少这个例子的标题在你后面去google搜索的时候会帮到你。

整个集合大概是按照难易程度排序,简单常见的在前面,比较少见的在最后。

1.1 拆箱
复制代码 代码如下:
> a, b, c = 1, 2, 3
> a, b, c
(1, 2, 3)
> a, b, c = [1, 2, 3]
> a, b, c
(1, 2, 3)
> a, b, c = (2 * i + 1 for i in range(3))
> a, b, c
(1, 3, 5)
> a, (b, c), d = [1, (2, 3), 4]
> a
1
> b
2
> c
3
> d
4
1.2 拆箱变量交换
复制代码 代码如下:> a, b = 1, 2
> a, b = b, a
> a, b
(2, 1)
1.3 扩展拆箱(只兼容python3)
复制代码 代码如下:> a, *b, c = [1, 2, 3, 4, 5]
> a
1
> b
[2, 3, 4]
> c
5
1.4 负数索引
复制代码 代码如下:> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
> a[-1]
10
> a[-3]
8
1.5 切割列表
复制代码 代码如下:> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
> a[2:8]
[2, 3, 4, 5, 6, 7]
1.6 负数索引切割列表
复制代码 代码如下:> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
> a[-4:-2]
[7, 8]
1.7指定步长切割列表
复制代码 代码如下:> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
> a[::2]
[0, 2, 4, 6, 8, 10]
> a[::3]
[0, 3, 6, 9]
> a[2:8:2]
[2, 4, 6]
1.8 负数步长切割列表
复制代码 代码如下:> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
> a[::-1]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
> a[::-2]
[10, 8, 6, 4, 2, 0]
1.9 列表切割赋值
复制代码 代码如下:> a = [1, 2, 3, 4, 5]
> a[2:3] = [0, 0]
> a
[1, 2, 0, 0, 4, 5]
> a[1:1] = [8, 9]
> a
[1, 8, 9, 2, 0, 0, 4, 5]
> a[1:-1] = []
> a
[1, 5]
1.10 命名列表切割方式
复制代码 代码如下:> a = [0, 1, 2, 3, 4, 5]
> LASTTHREE = slice(-3, None)
> LASTTHREE
slice(-3, None, None)
> a[LASTTHREE]
[3, 4, 5]
1.11 列表以及迭代器的压缩和解压缩
复制代码 代码如下:> a = [1, 2, 3]
> b = ['a', 'b', 'c']
> z = zip(a, b)
> z
[(1, 'a'), (2, 'b'), (3, 'c')]
> zip(*z)
[(1, 2, 3), ('a', 'b', 'c')]
1.12 列表相邻元素压缩器
复制代码 代码如下:> a = [1, 2, 3, 4, 5, 6]
> zip(*([iter(a)] * 2))
[(1, 2), (3, 4), (5, 6)]

> group_adjacent = lambda a, k: zip(*([iter(a)] * k))
> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]

> zip(a[::2], a[1::2])
[(1, 2), (3, 4), (5, 6)]

> zip(a[::3], a[1::3], a[2::3])
[(1, 2, 3), (4, 5, 6)]

> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))
> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]
1.13 在列表中用压缩器和迭代器滑动取值窗口
复制代码 代码如下:> def n_grams(a, n):
...     z = [iter(a[i:]) for i in range(n)]
...     return zip(*z)
...
> a = [1, 2, 3, 4, 5, 6]
> n_grams(a, 3)
[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]
> n_grams(a, 2)
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
> n_grams(a, 4)
[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]
1.14 用压缩器反转字典
复制代码 代码如下:> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
> m.items()
[('a', 1), ('c', 3), ('b', 2), ('d', 4)]
> zip(m.values(), m.keys())
[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]
> mi = dict(zip(m.values(), m.keys()))
> mi
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
1.15 列表展开
复制代码 代码如下:> a = [[1, 2], [3, 4], [5, 6]]
> list(itertools.chain.from_iterable(a))
[1, 2, 3, 4, 5, 6]

> sum(a, [])
[1, 2, 3, 4, 5, 6]

> [x for l in a for x in l]
[1, 2, 3, 4, 5, 6]

> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
> [x for l1 in a for l2 in l1 for x in l2]
[1, 2, 3, 4, 5, 6, 7, 8]

> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]
> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]
> flatten(a)
[1, 2, 3, 4, 5, 6, 7, 8]
1.16 生成器表达式
复制代码 代码如下:> g = (x ** 2 for x in xrange(10))
> next(g)
0
> next(g)
1
> next(g)
4
> next(g)
9
> sum(x ** 3 for x in xrange(10))
2025
> sum(x ** 3 for x in xrange(10) if x % 3 == 1)
408
1.17 字典推导
复制代码 代码如下:> m = {x: x ** 2 for x in range(5)}
> m
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

> m = {x: 'A' + str(x) for x in range(10)}
> m
{0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}
1.18 用字典推导反转字典
复制代码 代码如下:> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
> m
{'d': 4, 'a': 1, 'b': 2, 'c': 3}
> {v: k for k, v in m.items()}
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}
1.19 命名元组
复制代码 代码如下:> Point = collections.namedtuple('Point', ['x', 'y'])
> p = Point(x=1.0, y=2.0)
> p
Point(x=1.0, y=2.0)
> p.x
1.0
> p.y
2.0
1.20 继承命名元组
复制代码 代码如下:> class Point(collections.namedtuple('PointBase', ['x', 'y'])):
...     __slots__ = ()
...     def __add__(self, other):
...             return Point(x=self.x + other.x, y=self.y + other.y)
...
> p = Point(x=1.0, y=2.0)
> q = Point(x=2.0, y=3.0)
> p + q
Point(x=3.0, y=5.0)
1.21 操作集合
复制代码 代码如下:> A = {1, 2, 3, 3}
> A
set([1, 2, 3])
> B = {3, 4, 5, 6, 7}
> B
set([3, 4, 5, 6, 7])
> A | B
set([1, 2, 3, 4, 5, 6, 7])
> A & B
set([3])
> A - B
set([1, 2])
> B - A
set([4, 5, 6, 7])
> A ^ B
set([1, 2, 4, 5, 6, 7])
> (A ^ B) == ((A - B) | (B - A))
True
1.22 操作多重集合
复制代码 代码如下:> A = collections.Counter([1, 2, 2])
> B = collections.Counter([2, 2, 3])
> A
Counter({2: 2, 1: 1})
> B
Counter({2: 2, 3: 1})
> A | B
Counter({2: 2, 1: 1, 3: 1})
> A & B
Counter({2: 2})
> A + B
Counter({2: 4, 1: 1, 3: 1})
> A - B
Counter({1: 1})
> B - A
Counter({3: 1})
1.23 统计在可迭代器中最常出现的元素
复制代码 代码如下:> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])
> A
Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})
> A.most_common(1)
[(3, 4)]
> A.most_common(3)
[(3, 4), (1, 2), (2, 2)]
1.24 两端都可操作的队列
复制代码 代码如下:> Q = collections.deque()
> Q.append(1)
> Q.appendleft(2)
> Q.extend([3, 4])
> Q.extendleft([5, 6])
> Q
deque([6, 5, 2, 1, 3, 4])
> Q.pop()
4
> Q.popleft()
6
> Q
deque([5, 2, 1, 3])
> Q.rotate(3)
> Q
deque([2, 1, 3, 5])
> Q.rotate(-3)
> Q
deque([5, 2, 1, 3])
1.25 有最大长度的双端队列
复制代码 代码如下:> last_three = collections.deque(maxlen=3)
> for i in xrange(10):
...     last_three.append(i)
...     print ', '.join(str(x) for x in last_three)
...
0
0, 1
0, 1, 2
1, 2, 3
2, 3, 4
3, 4, 5
4, 5, 6
5, 6, 7
6, 7, 8
7, 8, 9
1.26 可排序词典
复制代码 代码如下:> m = dict((str(x), x) for x in range(10))
> print ', '.join(m.keys())
1, 0, 3, 2, 5, 4, 7, 6, 9, 8
> m = collections.OrderedDict((str(x), x) for x in range(10))
> print ', '.join(m.keys())
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))
> print ', '.join(m.keys())
10, 9, 8, 7, 6, 5, 4, 3, 2, 1
1.27 默认词典
复制代码 代码如下:> m = dict()
> m['a']
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'a'
>
> m = collections.defaultdict(int)
> m['a']
0
> m['b']
0
> m = collections.defaultdict(str)
> m['a']
''
> m['b'] += 'a'
> m['b']
'a'
> m = collections.defaultdict(lambda: '[default value]')
> m['a']
'[default value]'
> m['b']
'[default value]'
1.28 默认字典的简单树状表达
复制代码 代码如下:> import json
> tree = lambda: collections.defaultdict(tree)
> root = tree()
> root['menu']['id'] = 'file'
> root['menu']['value'] = 'File'
> root['menu']['menuitems']['new']['value'] = 'New'
> root['menu']['menuitems']['new']['onclick'] = 'new();'
> root['menu']['menuitems']['open']['value'] = 'Open'
> root['menu']['menuitems']['open']['onclick'] = 'open();'
> root['menu']['menuitems']['close']['value'] = 'Close'
> root['menu']['menuitems']['close']['onclick'] = 'close();'
> print json.dumps(root, sort_keys=True, indent=4, separators=(',', ': '))
{
    "menu": {
        "id": "file",
        "menuitems": {
            "close": {
                "onclick": "close();",
                "value": "Close"
            },
            "new": {
                "onclick": "new();",
                "value": "New"
            },
            "open": {
                "onclick": "open();",
                "value": "Open"
            }
        },
        "value": "File"
    }
}
1.29 对象到唯一计数的映射
复制代码 代码如下:> import itertools, collections
> value_to_numeric_map = collections.defaultdict(itertools.count().next)
> value_to_numeric_map['a']
0
> value_to_numeric_map['b']
1
> value_to_numeric_map['c']
2
> value_to_numeric_map['a']
0
> value_to_numeric_map['b']
1
1.30 最大和最小的几个列表元素
复制代码 代码如下:> a = [random.randint(0, 100) for __ in xrange(100)]
> heapq.nsmallest(5, a)
[3, 3, 5, 6, 8]
> heapq.nlargest(5, a)
[100, 100, 99, 98, 98]
1.31 两个列表的笛卡尔积
复制代码 代码如下:> for p in itertools.product([1, 2, 3], [4, 5]):
(1, 4)
(1, 5)
(2, 4)
(2, 5)
(3, 4)
(3, 5)
> for p in itertools.product([0, 1], repeat=4):
...     print ''.join(str(x) for x in p)
...
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
1.32 列表组合和列表元素替代组合
复制代码 代码如下:> for c in itertools.combinations([1, 2, 3, 4, 5], 3):
...     print ''.join(str(x) for x in c)
...
123
124
125
134
135
145
234
235
245
345
> for c in itertools.combinations_with_replacement([1, 2, 3], 2):
...     print ''.join(str(x) for x in c)
...
11
12
13
22
23
33
1.33 列表元素排列组合
复制代码 代码如下:> for p in itertools.permutations([1, 2, 3, 4]):
...     print ''.join(str(x) for x in p)
...
1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412
3421
4123
4132
4213
4231
4312
4321
1.34 可链接迭代器
复制代码 代码如下:> a = [1, 2, 3, 4]
> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):
...     print p
...
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))
...     print subset
...
()
(1,)
(2,)
(3,)
(4,)
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
(1, 2, 3, 4)
1.35 根据文件指定列类聚
复制代码 代码如下:> import itertools
> with open('contactlenses.csv', 'r') as infile:
...     data = [line.strip().split(',') for line in infile]
...
> data = data[1:]
> def print_data(rows):
...     print '\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)
...

> print_data(data)
young               myope                   no                      reduced                 none
young               myope                   no                      normal                  soft
young               myope                   yes                     reduced                 none
young               myope                   yes                     normal                  hard
young               hypermetrope            no                      reduced                 none
young               hypermetrope            no                      normal                  soft
young               hypermetrope            yes                     reduced                 none
young               hypermetrope            yes                     normal                  hard
pre-presbyopic      myope                   no                      reduced                 none
pre-presbyopic      myope                   no                      normal                  soft
pre-presbyopic      myope                   yes                     reduced                 none
pre-presbyopic      myope                   yes                     normal                  hard
pre-presbyopic      hypermetrope            no                      reduced                 none
pre-presbyopic      hypermetrope            no                      normal                  soft
pre-presbyopic      hypermetrope            yes                     reduced                 none
pre-presbyopic      hypermetrope            yes                     normal                  none
presbyopic          myope                   no                      reduced                 none
presbyopic          myope                   no                      normal                  none
presbyopic          myope                   yes                     reduced                 none
presbyopic          myope                   yes                     normal                  hard
presbyopic          hypermetrope            no                      reduced                 none
presbyopic          hypermetrope            no                      normal                  soft
presbyopic          hypermetrope            yes                     reduced                 none
presbyopic          hypermetrope            yes                     normal                  none

> data.sort(key=lambda r: r[-1])
> for value, group in itertools.groupby(data, lambda r: r[-1]):
...     print '-----------'
...     print 'Group: ' + value
...     print_data(group)
...
-----------
Group: hard
young               myope                   yes                     normal                  hard
young               hypermetrope            yes                     normal                  hard
pre-presbyopic      myope                   yes                     normal                  hard
presbyopic          myope                   yes                     normal                  hard
-----------
Group: none
young               myope                   no                      reduced                 none
young               myope                   yes                     reduced                 none
young               hypermetrope            no                      reduced                 none
young               hypermetrope            yes                     reduced                 none
pre-presbyopic      myope                   no                      reduced                 none
pre-presbyopic      myope                   yes                     reduced                 none
pre-presbyopic      hypermetrope            no                      reduced                 none
pre-presbyopic      hypermetrope            yes                     reduced                 none
pre-presbyopic      hypermetrope            yes                     normal                  none
presbyopic          myope                   no                      reduced                 none
presbyopic          myope                   no                      normal                  none
presbyopic          myope                   yes                     reduced                 none
presbyopic          hypermetrope            no                      reduced                 none
presbyopic          hypermetrope            yes                     reduced                 none
presbyopic          hypermetrope            yes                     normal                  none
-----------
Group: soft
young               myope                   no                      normal                  soft
young               hypermetrope            no                      normal                  soft
pre-presbyopic      myope                   no                      normal                  soft
pre-presbyopic      hypermetrope            no                      normal                  soft
presbyopic          hypermetrope            no                      normal                  soft

上一篇:python实现探测socket和web服务示例
下一篇:python实现目录树生成示例
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap