数据库 
首页 > 数据库 > 浏览文章

实现SQL Server 原生数据从XML生成JSON数据的实例代码

(编辑:jimmy 日期: 2025/1/28 浏览:3 次 )

实现SQL Server 原生数据从XML生成JSON数据的实例代码

   SQL Server 是关系数据库,查询结果通常都是数据集,但是在一些特殊需求下,我们需要XML数据,最近这些年,JSON作为WebAPI常用的交换数据格式,那么数据库如何生成JSON数据呢?今天就写了一个DEMO.

       1.创建表及测试数据

SET NOCOUNT ON 
 
IF OBJECT_ID('STATS') IS NOT NULL DROP TABLE STATS 
IF OBJECT_ID('STATIONS') IS NOT NULL DROP TABLE STATIONS 
IF OBJECT_ID('OPERATORS') IS NOT NULL DROP TABLE OPERATORS 
IF OBJECT_ID('REVIEWS') IS NOT NULL DROP TABLE REVIEWS 
 
-- Create and populate table with Station 
CREATE TABLE STATIONS(ID INTEGER PRIMARY KEY, CITY NVARCHAR(20), STATE CHAR(2), LAT_N REAL, LONG_W REAL); 
INSERT INTO STATIONS VALUES (13, 'Phoenix', 'AZ', 33, 112); 
INSERT INTO STATIONS VALUES (44, 'Denver', 'CO', 40, 105); 
INSERT INTO STATIONS VALUES (66, 'Caribou', 'ME', 47, 68); 
 
-- Create and populate table with Operators 
CREATE TABLE OPERATORS(ID INTEGER PRIMARY KEY, NAME NVARCHAR(20), SURNAME NVARCHAR(20)); 
INSERT INTO OPERATORS VALUES (50, 'John "The Fox"', 'Brown'); 
INSERT INTO OPERATORS VALUES (51, 'Paul', 'Smith'); 
INSERT INTO OPERATORS VALUES (52, 'Michael', 'Williams');  
 
-- Create and populate table with normalized temperature and precipitation data 
CREATE TABLE STATS ( 
    STATION_ID INTEGER REFERENCES STATIONS(ID), 
    MONTH INTEGER CHECK (MONTH BETWEEN 1 AND 12), 
    TEMP_F REAL CHECK (TEMP_F BETWEEN -80 AND 150), 
    RAIN_I REAL CHECK (RAIN_I BETWEEN 0 AND 100), PRIMARY KEY (STATION_ID, MONTH)); 
INSERT INTO STATS VALUES (13, 1, 57.4, 0.31); 
INSERT INTO STATS VALUES (13, 7, 91.7, 5.15); 
INSERT INTO STATS VALUES (44, 1, 27.3, 0.18); 
INSERT INTO STATS VALUES (44, 7, 74.8, 2.11); 
INSERT INTO STATS VALUES (66, 1, 6.7, 2.10); 
INSERT INTO STATS VALUES (66, 7, 65.8, 4.52); 
 
-- Create and populate table with Review 
CREATE TABLE REVIEWS(STATION_ID INTEGER,STAT_MONTH INTEGER,OPERATOR_ID INTEGER)  
insert into REVIEWS VALUES (13,1,50) 
insert into REVIEWS VALUES (13,7,50) 
insert into REVIEWS VALUES (44,7,51) 
insert into REVIEWS VALUES (44,7,52) 
insert into REVIEWS VALUES (44,7,50) 
insert into REVIEWS VALUES (66,1,51) 
insert into REVIEWS VALUES (66,7,51) 

2.查询结果集

select   STATIONS.ID    as ID, 
      STATIONS.CITY   as City, 
      STATIONS.STATE  as State, 
      STATIONS.LAT_N  as LatN, 
      STATIONS.LONG_W  as LongW, 
      STATS.MONTH    as Month, 
      STATS.RAIN_I   as Rain, 
      STATS.TEMP_F   as Temp, 
    OPERATORS.NAME  as Name, 
    OPERATORS.SURNAME as Surname 
from    stations  
inner join stats   on stats.STATION_ID=STATIONS.ID  
left join reviews  on reviews.STATION_ID=stations.id  
           and reviews.STAT_MONTH=STATS.[MONTH] 
left join OPERATORS on OPERATORS.ID=reviews.OPERATOR_ID 

结果:

实现SQL Server 原生数据从XML生成JSON数据的实例代码

2.查询xml数据

select stations.*, 
    (select stats.*,  
        (select OPERATORS.*  
        from  OPERATORS  
        inner join reviews on OPERATORS.ID=reviews.OPERATOR_ID  
        where reviews.STATION_ID=STATS.STATION_ID  
        and  reviews.STAT_MONTH=STATS.MONTH  
        for xml path('operator'),type 
        ) operators 
    from STATS  
    where STATS.STATION_ID=stations.ID  
    for xml path('stat'),type 
    ) stats  
from  stations  
for  xml path('station'),type 

结果:

<station> 
 <ID>13</ID> 
 <CITY>Phoenix</CITY> 
 <STATE>AZ</STATE> 
 <LAT_N>3.3000000e+001</LAT_N> 
 <LONG_W>1.1200000e+002</LONG_W> 
 <stats> 
  <stat> 
   <STATION_ID>13</STATION_ID> 
   <MONTH>1</MONTH> 
   <TEMP_F>5.7400002e+001</TEMP_F> 
   <RAIN_I>3.1000000e-001</RAIN_I> 
   <operators> 
    <operator> 
     <ID>50</ID> 
     <NAME>John "The Fox"</NAME> 
     <SURNAME>Brown</SURNAME> 
    </operator> 
   </operators> 
  </stat> 
  <stat> 
   <STATION_ID>13</STATION_ID> 
   <MONTH>7</MONTH> 
   <TEMP_F>9.1699997e+001</TEMP_F> 
   <RAIN_I>5.1500001e+000</RAIN_I> 
   <operators> 
    <operator> 
     <ID>50</ID> 
     <NAME>John "The Fox"</NAME> 
     <SURNAME>Brown</SURNAME> 
    </operator> 
   </operators> 
  </stat> 
 </stats> 
</station> 
<station> 
 <ID>44</ID> 
 <CITY>Denver</CITY> 
 <STATE>CO</STATE> 
 <LAT_N>4.0000000e+001</LAT_N> 
 <LONG_W>1.0500000e+002</LONG_W> 
 <stats> 
  <stat> 
   <STATION_ID>44</STATION_ID> 
   <MONTH>1</MONTH> 
   <TEMP_F>2.7299999e+001</TEMP_F> 
   <RAIN_I>1.8000001e-001</RAIN_I> 
  </stat> 
  <stat> 
   <STATION_ID>44</STATION_ID> 
   <MONTH>7</MONTH> 
   <TEMP_F>7.4800003e+001</TEMP_F> 
   <RAIN_I>2.1099999e+000</RAIN_I> 
   <operators> 
    <operator> 
     <ID>51</ID> 
     <NAME>Paul</NAME> 
     <SURNAME>Smith</SURNAME> 
    </operator> 
    <operator> 
     <ID>52</ID> 
     <NAME>Michael</NAME> 
     <SURNAME>Williams</SURNAME> 
    </operator> 
    <operator> 
     <ID>50</ID> 
     <NAME>John "The Fox"</NAME> 
     <SURNAME>Brown</SURNAME> 
    </operator> 
   </operators> 
  </stat> 
 </stats> 
</station> 
<station> 
 <ID>66</ID> 
 <CITY>Caribou</CITY> 
 <STATE>ME</STATE> 
 <LAT_N>4.7000000e+001</LAT_N> 
 <LONG_W>6.8000000e+001</LONG_W> 
 <stats> 
  <stat> 
   <STATION_ID>66</STATION_ID> 
   <MONTH>1</MONTH> 
   <TEMP_F>6.6999998e+000</TEMP_F> 
   <RAIN_I>2.0999999e+000</RAIN_I> 
   <operators> 
    <operator> 
     <ID>51</ID> 
     <NAME>Paul</NAME> 
     <SURNAME>Smith</SURNAME> 
    </operator> 
   </operators> 
  </stat> 
  <stat> 
   <STATION_ID>66</STATION_ID> 
   <MONTH>7</MONTH> 
   <TEMP_F>6.5800003e+001</TEMP_F> 
   <RAIN_I>4.5200000e+000</RAIN_I> 
   <operators> 
    <operator> 
     <ID>51</ID> 
     <NAME>Paul</NAME> 
     <SURNAME>Smith</SURNAME> 
    </operator> 
   </operators> 
  </stat> 
 </stats> 
</station> 

3.如何生成JSON数据

1)创建辅助函数

CREATE FUNCTION [dbo].[qfn_XmlToJson](@XmlData xml) 
RETURNS nvarchar(max) 
AS 
BEGIN 
 declare @m nvarchar(max) 
 SELECT @m='['+Stuff 
 ( 
   (SELECT theline from 
  (SELECT ','+' {'+Stuff 
    ( 
       (SELECT ',"'+coalesce(b.c.value('local-name(.)', 'NVARCHAR(255)'),'')+'":'+ 
           case when b.c.value('count(*)','int')=0  
           then dbo.[qfn_JsonEscape](b.c.value('text()[1]','NVARCHAR(MAX)')) 
           else dbo.qfn_XmlToJson(b.c.query('*')) 
           end 
         from x.a.nodes('*') b(c)                                 
         for xml path(''),TYPE).value('(./text())[1]','NVARCHAR(MAX)') 
        ,1,1,'')+'}' 
     from @XmlData.nodes('/*') x(a) 
    ) JSON(theLine) 
    for xml path(''),TYPE).value('.','NVARCHAR(MAX)') 
   ,1,1,'')+']' 
  return @m 
END 

CREATE FUNCTION [dbo].[qfn_JsonEscape](@value nvarchar(max) ) 
returns nvarchar(max) 
as begin 
  
 if (@value is null) return 'null' 
 if (TRY_PARSE( @value as float) is not null) return @value 
 
 set @value=replace(@value,'\','\\') 
 set @value=replace(@value,'"','\"') 
 
 return '"'+@value+'"' 
end 

3)查询sql

select dbo.qfn_XmlToJson 
( 
 ( 
  select stations.ID,stations.CITY,stations.STATE,stations.LAT_N,stations.LONG_W , 
     (select stats.*,  
          (select OPERATORS.*  
          from  OPERATORS inner join reviews  
          on   OPERATORS.ID=reviews.OPERATOR_ID 
          where reviews.STATION_ID=STATS.STATION_ID  
          and  reviews.STAT_MONTH=STATS.MONTH  
          for xml path('operator'),type 
          ) operators 
      from STATS  
      where STATS.STATION_ID=stations.ID for xml path('stat'),type 
     ) stats  
   from stations for xml path('stations'),type 
  ) 
) 

结果:

[ {"ID":13,"CITY":"Phoenix","STATE":"AZ","LAT_N":3.3000000e+001,"LONG_W"
:1.1200000e+002,"stats":[ {"STATION_ID":13,"MONTH":1,"TEMP_F":5.7400002e+001,"
RAIN_I":3.1000000e-001,"operators":[ {"ID":50,"NAME":"John \"The Fox\"","SURNAME":"Brown"}]},
 {"STATION_ID":13,"MONTH":7,"TEMP_F":9.1699997e+001,"RAIN_I":5.1500001e+000,"operators":
[ {"ID":50,"NAME":"John \"The Fox\"","SURNAME":"Brown"}]}]}, {"ID":44,"CITY":"Denver",
"STATE":"CO","LAT_N":4.0000000e+001,"LONG_W":1.0500000e+002,"stats":[ {"STATION_ID":44,
"MONTH":1,"TEMP_F":2.7299999e+001,"RAIN_I":1.8000001e-001}, {"STATION_ID":44,"MONTH":7,
"TEMP_F":7.4800003e+001,"RAIN_I":2.1099999e+000,"operators":[ {"ID":51,"NAME":"Paul",
"SURNAME":"Smith"}, {"ID":52,"NAME":"Michael","SURNAME":"Williams"}, {"ID":50,"NAME"
:"John \"The Fox\"","SURNAME":"Brown"}]}]}, {"ID":66,"CITY":"Caribou","STATE":"ME","LAT_N":
4.7000000e+001,"LONG_W":6.8000000e+001,"stats":[ {"STATION_ID":66,"MONTH":1,"TEMP
_F":6.6999998e+000,"RAIN_I":2.0999999e+000,"operators":[ {"ID":51,"NAME":"Paul","
SURNAME":"Smith"}]}, {"STATION_ID":66,"MONTH":7,"TEMP_F":6.5800003e+001,"RAIN_I":
4.5200000e+000,"operators":[ {"ID":51,"NAME":"Paul","SURNAME":"Smith"}]}]}] 

总结:

JSON作为灵活的Web通信交换架构,如果把配置数据存放在数据库中,直接获取JSON,那配置就会非常简单了,也能够大量减轻应用服务器的压力!

感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

上一篇:SQL Server行转列的方法解析
下一篇:SQL Server里书签查找的性能伤害
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap