数据库 
首页 > 数据库 > 浏览文章

Mysql全局ID生成方法

(编辑:jimmy 日期: 2024/11/5 浏览:3 次 )

生产系统随着业务增长总会经历一个业务量由小变大的过程,可扩展性是考量数据库系统高可用性的一个重要指标;在单表/数据库数据量过大,更新量不断飙涨时,MySQL DBA往往会对业务系统提出sharding的方案。既然要sharding,那么不可避免的要讨论到sharding key问题,在有些业务系统中,必须保证sharding key全局唯一,比如存放商品的数据库等,那么如何生成全局唯一的ID呢,下文将从DBA的角度介绍几种常见的方案。

1、使用CAS思想

什么是CAS协议

Memcached于1.2.4版本新增CAS(Check and Set)协议类同于Java并发的CAS(Compare and Swap)原子操作,处理同一item被多个线程更改过程的并发问题

CAS的基本原理

基本原理非常简单,一言以蔽之,就是“版本号”,每个存储的数据对象,都有一个版本号。

我们可以从下面的例子来理解:

不采用CAS,则有如下的情景:

 "htmlcode">

CREATE TABLE `SEQUENCE` (
  `name` varchar(30) NOT NULL COMMENT '分表的表名',
  `gid` bigint(20) NOT NULL COMMENT '最大全局id',
  PRIMARY KEY (`name`)
) ENGINE=innodb 

sql语句

update sequence set gid = 203 where name = 'users' and gid < 203; 

sql语句的 and gid < 203 是为了保证并发环境下gid的值只增不减。

如果update语句的影响记录条数为0说明,已经有其他进程提前生成了203这个值,并写入了数据库。需要重复以上步骤从新生成。

代码实现如下:

//$name 表名
function next_id_db($name){
  //获取数据库全局sequence对象
  $seq_dao = Wk_Sequence_Dao_Sequence::getInstance();
  $threshold = 100; //最大尝试次数
  for($i = 0; $i < $threshold; $i++){
    $last_id = $seq_dao->get_seq_id($name);//从数据库获取全局id
    $id = $last_id +1;
    $ret = $seq_dao->set_seq_id($name, $id);
    if($ret){
      return $id;
      break;
    }
  }
  return false;
}

2、使用全局锁

在进行并发编程时,一般都会使用锁机制。其实,全局id的生成也是解决并发问题。

生成思路如下:

在使用redis的setnx方法和memcace的add方法时,如果指定的key已经存在,则返回false。利用这个特性,实现全局锁

每次生成全局id前,先检测指定的key是否存在,如果不存在则使用redis的incr方法或者memcache的increment进行加1操作。这两个方法的返回值是加1后的值,如果存在,则程序进入循环等待状态。循环过程中不断检测key是否还存在,如果key不存在就执行上面的操作。

代码如下:

//使用redis实现
//$name 为 逻辑表名
function next_id_redis($name){
  $redis = Wk_Redis_Util::getRedis();//获取redis对象
  $seq_dao = Wk_Sequence_Dao_Sequence::getInstance();//获取存储全局id数据表对象
  if(!is_object($redis)){
    throw new Exception("fail to create redis object");
  }
  $max_times = 10; //最大执行次数 避免redis不可用的时候 进入死循环
  while(1){
    $i++;
    //检测key是否存在,相当于检测锁是否存在
    $ret = $redis->setnx("sequence_{$name}_flag",time());
    if($ret){
      break;
    }
    if($i > $max_times){
      break;
    }
    $time = $redis->get("sequence_{$name}_flag");
    if(is_numeric($time) && time() - $time > 1){//如果循环等待时间大于1秒,则不再等待。
      break;
    }
  }
  $id = $redis->incr("sequence_{$name}");
  //如果操作失败,则从sequence表中获取全局id并加载到redis
  if (intval($id) === 1 or $id === false) {
    $last_id = $seq_dao->get_seq_id($name);//从数据库获取全局id
    if(!is_numeric($last_id)){
      throw new Exception("fail to get id from db");
    }
    $ret = $redis->set("sequence_{$name}",$last_id);
    if($ret == false){
      throw new Exception("fail to set redis key [ sequence_{$name} ]");
    }
    $id = $redis->incr("sequence_{$name}");
    if(!is_numeric($id)){
      throw new Exception("fail to incr redis key [ sequence_{$name} ]");
    }
  }
  $seq_dao->set_seq_id($name, $id);//把生成的全局id写入数据表sequence
  $redis->delete("sequence_{$name}_flag");//删除key,相当于释放锁
  $db = null;
  return $id;
} 

3、redis和db结合

使用redis直接操作内存,可能性能会好些。但是如果redis死掉后,如何处理呢?把以上两种方案结合,提供更好的稳定性。
代码如下:

function next_id($name){
  try{
    return $this->next_id_redis($name);
  }
  catch(Exception $e){
    return $this->next_id_db($name);
  }
} 

4、Flicker的解决方案

因为mysql本身支持auto_increment操作,很自然地,我们会想到借助这个特性来实现这个功能。Flicker在解决全局ID生成方案里就采用了MySQL自增长ID的机制(auto_increment + replace into + MyISAM)。一个生成64位ID方案具体就是这样的:
先创建单独的数据库(eg:ticket),然后创建一个表:

CREATE TABLE Tickets64 (
      id bigint(20) unsigned NOT NULL auto_increment,
      stub char(1) NOT NULL default '',
      PRIMARY KEY (id),
      UNIQUE KEY stub (stub)
  ) ENGINE=MyISAM 

当我们插入记录后,执行SELECT * from Tickets64,查询结果就是这样的:

+-------------------+------+
| id                | stub |
+-------------------+------+
| 72157623227190423 |    a |
+-------------------+------+

在我们的应用端需要做下面这两个操作,在一个事务会话里提交:

REPLACE INTO Tickets64 (stub) VALUES ('a');
SELECT LAST_INSERT_ID(); 

这样我们就能拿到不断增长且不重复的ID了。
到上面为止,我们只是在单台数据库上生成ID,从高可用角度考虑,
接下来就要解决单点故障问题:Flicker启用了两台数据库服务器来生成ID,
通过区分auto_increment的起始值和步长来生成奇偶数的ID。

TicketServer1:
auto-increment-increment = 2
auto-increment-offset = 1
TicketServer2:
auto-increment-increment = 2
auto-increment-offset = 2 

最后,在客户端只需要通过轮询方式取ID就可以了。

 •优点:充分借助数据库的自增ID机制,提供高可靠性,生成的ID有序。

 •缺点:占用两个独立的MySQL实例,有些浪费资源,成本较高。

以上内容是小编给大家分享的Mysql全局ID生成方法,希望大家喜欢。

上一篇:基于MySql的扩展功能生成全局ID
下一篇:简单谈谈MySQL的loose index scan
一句话新闻
一文看懂荣耀MagicBook Pro 16
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 SiteMap