数据库 
首页 > 数据库 > 浏览文章

详解Redis SCAN命令实现有限保证的原理

(编辑:jimmy 日期: 2025/1/11 浏览:3 次 )

SCAN命令可以为用户保证:从完整遍历开始直到完整遍历结束期间,一直存在于数据集内的所有元素都会被完整遍历返回,但是同一个元素可能会被返回多次。如果一个元素是在迭代过程中被添加到数据集的,又或者是在迭代过程中从数据集中被删除的,那么这个元素可能会被返回,也可能不会返回。

这是如何实现的呢,先从Redis中的字典dict开始。Redis的数据库是使用dict作为底层实现的。

字典数据类型

Redis中的字典由dict.h/dict结构表示:

typedef struct dict {
 dictType *type;
 void *privdata;
 dictht ht[2];
 long rehashidx; /* rehashing not in progress if rehashidx == -1 */
 unsigned long iterators; /* number of iterators currently running */
} dict;

typedef struct dictht {
 dictEntry **table;
 unsigned long size;
 unsigned long sizemask;
 unsigned long used;
} dictht;

字典由两个哈希表dictht构成,主要用做rehash,平常主要使用ht[0]哈希表。

哈希表由一个成员为dictEntry的数组构成,size属性记录了数组的大小,used属性记录了已有节点的数量,sizemask属性的值等于size - 1。数组大小一般是2n,所以sizemask二进制是0b11111...,主要用作掩码,和哈希值一起决定key应该放在数组的哪个位置。

求key在数组中的索引的计算方法如下:

index = hash & d->ht[table].sizemask;

也就是根据掩码求低位值。

rehash的问题

字典rehash时会使用两个哈希表,首先为ht[1]分配空间,如果是扩展操作,ht[1]的大小为第一个大于等于2倍ht[0].used的2n,如果是收缩操作,ht[1]的大小为第一个大于等于ht[0].used的2n。然后将ht[0]的所有键值对rehash到ht[1]中,最后释放ht[0],将ht[1]设置为ht[0],新创建一个空白哈希表当做ht[1]。rehash不是一次完成的,而是分多次、渐进式地完成。

举个例子,现在将一个size为4的哈希表ht[0](sizemask为11, index = hash & 0b11)rehash至一个size为8的哈希表ht[1](sizemask为111, index = hash & 0b111)。

ht[0]中处于bucket0位置的key的哈希值低两位为00,那么rehash至ht[1]时index取低三位可能为000(0)和100(4)。也就是ht[0]中bucket0中的元素rehash之后分散于ht[1]的bucket0与bucket4,以此类推,对应关系为:

 ht[0] -> ht[1]
 ----------------
  0 -> 0,4 
  1 -> 1,5
  2 -> 2,6
  3 -> 3,7

如果SCAN命令采取0->1->2->3的顺序进行遍历,就会出现如下问题:

"color: #ff0000">SCAN的遍历顺序

SCAN命令的遍历顺序,可以举一个例子看一下:

127.0.0.1:6379[3]> keys *
1) "bar"
2) "qux"
3) "baz"
4) "foo"
127.0.0.1:6379[3]> scan 0 count 1
1) "2"
2) 1) "bar"
127.0.0.1:6379[3]> scan 2 count 1
1) "1"
2) 1) "foo"
127.0.0.1:6379[3]> scan 1 count 1
1) "3"
2) 1) "qux"
 2) "baz"
127.0.0.1:6379[3]> scan 3 count 1
1) "0"
2) (empty list or set)

可以看出顺序是0->2->1->3,很难看出规律,转换成二进制观察一下:

00 -> 10 -> 01 -> 11

二进制就很明了了,遍历采用的顺序也是加法,但每次是高位加1的,也就是从左往右相加、从高到低进位的。

SCAN源码

SCAN遍历字典的源码在dict.c/dictScan,分两种情况,字典不在进行rehash或者正在进行rehash。

不在进行rehash时,游标是这样计算的:

m0 = t0->sizemask;
// 将游标的umask位的bit都置为1
v |= ~m0;
// 反转游标
v = rev(v);
// 反转后+1,达到高位加1的效果
v++;
// 再次反转复位
v = rev(v);

当size为4时,sizemask为3(00000011),游标计算过程:

   v |= ~m0 v = rev(v) v++  v = rev(v)
00000000(0) -> 11111100 -> 00111111 -> 01000000 -> 00000010(2)
00000010(2) -> 11111110 -> 01111111 -> 10000000 -> 00000001(1)
00000001(1) -> 11111101 -> 10111111 -> 11000000 -> 00000011(3)
00000011(3) -> 11111111 -> 11111111 -> 00000000 -> 00000000(0)

遍历size为4时的游标状态转移为0->2->1->3。

同理,size为8时的游标状态转移为0->4->2->6->1->5->3->7,也就是000->100->010->110->001->101->011->111。

再结合前面的rehash:

  ht[0] -> ht[1]
  ----------------
   0  ->  0,4 
   1  ->  1,5
   2  ->  2,6
   3  ->  3,7

可以看出,当size由小变大时,所有原来的游标都能在大的哈希表中找到相应的位置,并且顺序一致,不会重复读取并且不会遗漏。

当size由大变小的情况,假设size由8变为了4,分两种情况,一种是游标为0,2,1,3中的一种,此时继续读取,也不会遗漏和重复。

但如果游标返回的不是这四种,例如返回了7,7&11之后变为了3,所以会从size为4的哈希表的bucket3开始继续遍历,而bucket3包含了size为8的哈希表中的bucket3与bucket7,所以会造成重复读取size为8的哈希表中的bucket3的情况。

所以,redis里rehash从小到大时,SCAN命令不会重复也不会遗漏。而从大到小时,有可能会造成重复但不会遗漏。

当正在进行rehash时,游标计算过程:

  /* Make sure t0 is the smaller and t1 is the bigger table */
    if (t0->size > t1->size) {
      t0 = &d->ht[1];
      t1 = &d->ht[0];
    }
    m0 = t0->sizemask;
    m1 = t1->sizemask;
    /* Emit entries at cursor */
    if (bucketfn) bucketfn(privdata, &t0->table[v & m0]);
    de = t0->table[v & m0];
    while (de) {
      next = de->next;
      fn(privdata, de);
      de = next;
    }
    /* Iterate over indices in larger table that are the expansion
     * of the index pointed to by the cursor in the smaller table */
    do {
      /* Emit entries at cursor */
      if (bucketfn) bucketfn(privdata, &t1->table[v & m1]);
      de = t1->table[v & m1];
      while (de) {
        next = de->next;
        fn(privdata, de);
        de = next;
      }
      /* Increment the reverse cursor not covered by the smaller mask.*/
      v |= ~m1;
      v = rev(v);
      v++;
      v = rev(v);
      /* Continue while bits covered by mask difference is non-zero */
    } while (v & (m0 ^ m1));

算法会保证t0是较小的哈希表,不是的话t0与t1互换,先遍历t0中游标所在的bucket,然后再遍历较大的t1。

求下一个游标的过程基本相同,只是把m0换成了rehash之后的哈希表的m1,同时还加了一个判断条件:

v & (m0 ^ m1)

size4的m0为00000011,size8的m1为00000111,m0 ^ m1取值为00000100,即取二者mask的不同位,看游标在这些标志位是否为1。

假设游标返回了2,并且正在进行rehash,此时size由4变成了8,二者mask的不同位是低第三位。

首先遍历t0中的bucket2,然后遍历t1中的bucket2,公式计算出的下一个游标为6(00000110),低第三位为1,继续循环,遍历t1中的bucket6,然后计算游标为1,结束循环。

所以正在rehash时,是两个哈希表都遍历的,以避免遗漏的情况。

总结

以上所述是小编给大家介绍的Redis SCAN命令实现有限保证的原理,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

上一篇:详解redis desktop manager安装及连接方式
下一篇:基于redis实现定时任务的方法详解
一句话新闻
微软与英特尔等合作伙伴联合定义“AI PC”:键盘需配有Copilot物理按键
几个月来,英特尔、微软、AMD和其它厂商都在共同推动“AI PC”的想法,朝着更多的AI功能迈进。在近日,英特尔在台北举行的开发者活动中,也宣布了关于AI PC加速计划、新的PC开发者计划和独立硬件供应商计划。
在此次发布会上,英特尔还发布了全新的全新的酷睿Ultra Meteor Lake NUC开发套件,以及联合微软等合作伙伴联合定义“AI PC”的定义标准。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap