数据库 
首页 > 数据库 > 浏览文章

Spark SQL操作JSON字段的小技巧

(编辑:jimmy 日期: 2024/11/24 浏览:3 次 )

前言

介绍Spark SQL的JSON支持,这是我们在Databricks中开发的一个功能,可以在Spark中更容易查询和创建JSON数据。随着网络和移动应用程序的普及,JSON已经成为Web服务API以及长期存储的常用的交换格式。使用现有的工具,用户通常会使用复杂的管道来在分析系统中读取和写入JSON数据集。在Apache Spark 1.1中发布Spark SQL的JSON支持,在Apache Spark 1.2中增强,极大地简化了使用JSON数据的端到端体验。

很多时候,比如用structure streaming消费kafka数据,默认可能是得到key,value字段,key是偏移量,value是一个byte数组。很可能value其实是一个Json字符串。这个时候我们该如何用SQL操作这个json里的东西呢?另外,如果我处理完的数据,我想写入到kafka,但是我想把整条记录作为json格式写入到Kafka,又该怎么写这个SQL呢?

get_json_object

第一个就是get_json_object,具体用法如下:

select get_json_object('{"k": "foo", "v": 1.0}','$.k') as k

需要给定get_json_object 一个json字段名(或者字符串),然后通过类似jsonPath的方式去拿具体的值。
这个方法其实有点麻烦,如果要提取里面的是个字段,我就要写是个类似的东西,很复杂。

from_json

具体用法如下:

select a.k from (
select from_json('{"k": "foo", "v": 1.0}','k STRING, v STRING',map("","")) as a
)

这个方法可以给json定义一个Schema,这样在使用时,就可以直接使用a.k这种方式了,会简化很多。

to_json

该方法可以把对应字段转化为json字符串,比如:

select to_json(struct(*)) AS value

可以把所有字段转化为json字符串,然后表示成value字段,接着你就可以把value字段写入Kafka了。是不是很简单。

处理具有大量字段的JSON数据集

JSON数据通常是半结构化、非固定结构的。将来,我们将扩展Spark SQL对JSON支持,以处理数据集中的每个对象可能具有相当不同的结构的情况。例如,考虑使用JSON字段来保存表示HTTP标头的键/值对的数据集。每个记录可能会引入新的标题类型,并为每个记录使用一个不同的列将产生一个非常宽的模式。我们计划支持自动检测这种情况,而是使用map类型。因此,每行可以包含Map,使得能够查询其键/值对。这样,Spark SQL将处理具有更少结构的JSON数据集,推动了基于SQL的系统可以处理的那种查询的边界。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。

上一篇:使用sqlplus创建DDL和DML操作技巧
下一篇:neo4j安装配置入门教程
一句话新闻
Windows上运行安卓你用过了吗
在去年的5月23日,借助Intel Bridge Technology以及Intel Celadon两项技术的驱动,Intel为PC用户带来了Android On Windows(AOW)平台,并携手国内软件公司腾讯共同推出了腾讯应用宝电脑版,将Windows与安卓两大生态进行了融合,PC的使用体验随即被带入到了一个全新的阶段。
友情链接:杰晶网络 DDR爱好者之家 南强小屋 黑松山资源网 白云城资源网 网站地图 SiteMap