监控Nodejs的性能实例代码
下面给大家介绍下监控Nodejs的性能,
最近想监控一下Nodejs的性能。记录分析Log太麻烦,最简单的方式是记录每个HTTP请求的处理时间,直接在HTTP Response Header中返回。
记录HTTP请求的时间很简单,就是收到请求记一个时间戳,响应请求的时候再记一个时间戳,两个时间戳之差就是处理时间。
但是,res.send()代码遍布各个js文件,总不能把每个URL处理函数都改一遍吧。
正确的思路是用middleware实现。但是Nodejs没有任何拦截res.send()的方法,怎么破?
其实只要稍微转换一下思路,放弃传统的OOP方式,以函数对象看待res.send(),我们就可以先保存原始的处理函数res.send,再用自己的处理函数替换res.send:
app.use(function (req, res, next) { // 记录start time: var exec_start_at = Date.now(); // 保存原始处理函数: var _send = res.send; // 绑定我们自己的处理函数: res.send = function () { // 发送Header: res.set('X-Execution-Time', String(Date.now() - exec_start_at)); // 调用原始处理函数: return _send.apply(res, arguments); }; next(); });‘
只用了几行代码,就把时间戳搞定了。
对于res.render()方法不需要处理,因为res.render()内部调用了res.send()。
调用apply()函数时,传入res对象很重要,否则原始的处理函数的this指向undefined直接导致出错。
实测首页响应时间9毫秒:
x-execution-time
ps:下面给大家介绍下nodejs实现远程桌面监控的方法,具体内容如下所示:
最近使用node实现了一个远程桌面监控的应用,分为服务端和客户端,客户端可以实时监控服务端的桌面,并且可以通过鼠标和键盘来控制服务端的桌面。
这里因为我是用的同一台电脑,所以监控画面是这样的,当然使用两台电脑一个跑 客户端 ,一个跑 服务端 才有意义。
原理
其实这个应用的功能主要分为两部分,一是实现监控,即在客户端可以看到服务端的桌面,这部分功能是通过定时截图来实现的,比如服务端一秒截几次图,然后通过 socketio 发送到客户端,客户端通过改变img的src来实现一帧帧的显示最新的图片,这样就能看到动态的桌面了。监控就是这样实现的。
另一个功能是控制,即客户端对监控画面的操作,包括鼠标和键盘的操作都可以在服务端的桌面真正的生效,这部分功能的实现是在electron的应用中监听了所有的鼠标和键盘事件,比如keydown、keyup、keypress,mousedown、mouseup、mousemove、click等,然后通过socketio把事件传递到服务端,服务端通过 robot-js 来执行不同的事件,这样就能使得客户端的事件在服务端触发了。
实现
原理讲完,我们来具体实现一下( 源码链接在这 )。
实现socket通信
首先,服务端和客户端分别引入 socket.io 和 socket.io-client , 分别初始化
服务端:
const app = new Koa(); const server = http.createServer(app.callback()); createSocketIO(server); app.use((ctx): void => { ctx.body = 'please connect use socket'; }); server.listen(port, (): void => { console.log('server started at http://localhost:' + port); });
//createSocketIO const io = socketIO(server, { pingInterval: 10000, pingTimeout: 5000, cookie: false }); io.on('connect', (socket): void => { socket.emit('msg', 'connected'); }
客户端:
var socket = this.socket = io('http://' + this.ip + ':3000') socket.on('msg', (msg) => { console.log(msg) }) socket.on('error', (err) => { alert('出错了' + err) })
这样,服务端和客户端就通过socketio建立了链接。
实现桌面监控
之后我们首先要在服务端来截图,使用 screenshot-desktop 这个包
const screenshot = require('screenshot-desktop') const SCREENSHOT_INTERVAL = 500; export const createScreenshot = (): Promise<[string, Buffer]> => { return screenshot({format: 'png'}).then((img): [string, Buffer] => { return [ img.toString('base64'), img]; }).catch((err): {} => { console.log('截图失败', err); return err; }) } export const startScreenshotTimer = (callback): {} => { return setInterval((): void => { createScreenshot().then(([imgStr, img]): void => { callback(['data:image/png;base64,' + imgStr, img]); }) }, SCREENSHOT_INTERVAL) }
然后通过socketio的emit来传到客户端:
startScreenshotTimer(([imgStr, img]): void => { io.sockets.emit('screenshot', imgStr); });
客户端收到图片后,设置到img的src上(这里是base64的图片url):
<img class="screenshot" :src="/UploadFiles/2021-04-02/screenshot">
其实这样就已经实现了桌面监控了,有兴趣的同学可以照着这个思路实现看看,并不是很麻烦。
当然这样的方案是有问题的,因为我们需要知道服务端桌面尺寸的大小,然后根据这个来调整客户端显示的图片尺寸。
实现这个细节是使用的 get-pixels 这个库,可以读取本地图片文件的宽度高度等信息,所以我先把图片写入本地,然后又读取出来,这样获取到的屏幕尺寸。
interface ScreenSize { width: number; height: number; } function getScreenSize(img): Promise<ScreenSize> { const imgPath = path.resolve(process.cwd(), './tmp.png'); fs.writeFileSync(imgPath, img); return new Promise((resolve): void => { getPixels(imgPath, function(err, pixels): void { if(err) { console.log("Bad image path") return } resolve({ width: pixels.shape[0], height: pixels.shape[1] }); }); }) }然后通过socektio传递给客户端
getScreenSize(img).then(({ width, height}) => { io.sockets.emit('screensize', { width, height }) });
客户端收到之后调整图片大小就可以了
<img class="screenshot" :src="/UploadFiles/2021-04-02/screenshot">至此已经实现了桌面监控,并且图片尺寸和服务端屏幕的尺寸是一致的。
这里还有一个细节,就是获取到的图片大小是物理像素,而客户端设置的px是设备无关像素,也就是要除以dpr才是px的值。这里需要获取dpr,因为目前只是在mac下用,所以直接除以2了。
实现远程控制
代码写到这里,客户端的electron应用中已经可以实时显示服务端的桌面了。(当然像输入ip的弹框,以及electron-vue和typescript等和主要逻辑无关的细节就不展开了。)
接下来我们要实现远程控制,也就是监听事件,传递事件,执行事件这几部分。
首先我们定义一下传递的事件的格式:
interface MouseEvent { type: string; buttonType: string; x: number; y: number; } interface KeyboardEvent { type: string; keyCode: number; keyName: string; }
鼠标事件MouseEvent,type为鼠标事件的类型,具体的值包括mousedown、mouseup、mousemove、click、dblclick,buttonType指的是鼠标的左键还是右键,值为 left 或 right,x和y是具体的坐标。
键盘事件KeyboardEvent,type为键盘事件的类型,具体的值包括keydown、keyup、keypress,keyCode为键盘码,keyName为键的名字。
接下来我们要在客户端监听事件:
<img class="screenshot" :src="/UploadFiles/2021-04-02/screenshot">通过socekt把事件传递到服务端
上一篇:vue swipe自定义组件实现轮播效果handleKeyboardEvent (e) { this.socket && this.socket.emit('userevent', { type: 'keyboard', event: { type: e.type, keyName: e.key, keyCode: e.keyCode } }) }, handleMouseEvent (e) { this.socket && this.socket.emit('userevent', { type: 'mouse', event: { type: e.type, buttonType: e.buttons === 2 "htmlcode">const { Mouse, Point, Keyboard } = require('robot-js'); interface MouseEvent { type: string; buttonType: string; x: number; y: number; } interface KeyboardEvent { type: string; keyCode: number; keyName: string; } export default class EventExecuter { public mouse; public keyboard; public constructor(){ this.mouse = new Mouse(); this.keyboard = new Keyboard(); } public executeKeyboardEvent(event: KeyboardEvent): void { switch(event.type) { case 'keydown': this.keyboard.press(event.keyCode); break; case 'keyup': this.keyboard.release(event.keyCode); break; case 'keypress': this.keyboard.click(event.keyCode); break; default: break; } } public executeMouseEvent(event): void { Mouse.setPos(new Point(event.x, event.y)); const button = event.buttonType === 'left' "color: #ff0000">总结以上所述是小编给大家介绍的nodejs实现远程桌面监控的方法,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!
下一篇:20个必会的JavaScript面试题(小结)
荣耀猎人回归!七大亮点看懂不只是轻薄本,更是游戏本的MagicBook Pro 16.
人们对于笔记本电脑有一个固有印象:要么轻薄但性能一般,要么性能强劲但笨重臃肿。然而,今年荣耀新推出的MagicBook Pro 16刷新了人们的认知——发布会上,荣耀宣布猎人游戏本正式回归,称其继承了荣耀 HUNTER 基因,并自信地为其打出“轻薄本,更是游戏本”的口号。
众所周知,寻求轻薄本的用户普遍更看重便携性、外观造型、静谧性和打字办公等用机体验,而寻求游戏本的用户则普遍更看重硬件配置、性能释放等硬核指标。把两个看似难以相干的产品融合到一起,我们不禁对它产生了强烈的好奇:作为代表荣耀猎人游戏本的跨界新物种,它究竟做了哪些平衡以兼顾不同人群的各类需求呢?